
- •0. Вопросы.
- •2. Подходы для классификации сетей по типам технологий передачи.
- •3. Классификация сетей по размеру. Характеристики локальных, муниципальных, глобальных, беспроводных и домашних сетей.
- •4. Основное требование к современным вычислительным сетям. Два подхода к обеспечению качества обслуживания в сети.
- •5. Требование производительности в современных вычислительных сетях: время реакции, пропускная способность, задержка передачи и вариация задержки передачи.
- •7. Требование расширяемости и масштабируемости в современных вычислительных сетях.
- •8. Требование прозрачности на уровне пользователя, на уровне программиста в современных вычислительных сетях.
- •9. Требование управляемости и поддержки разных видов трафика в современных вычислительных сетях.
- •10. Многоуровневый подход как идеологическая основа стандартизации при разработке средств сетевого взаимодействия. Протокол. Интерфейс. Стек протоколов.
- •11. Семиуровневая модель взаимодействия открытых систем osi.
- •13. Пять (6) типичных топологий физических связей, достоинства и недостатки.
- •14. Требования, предъявляемые к адресу узла. Противоречивость требований. Три схемы адресации узлов.
- •15. Общие принципы передачи дискретных данных, обобщенный состав линий связи. Три типа линий связи в зависимости от используемой среды передачи, характеристики линий связи.
- •17. Характеристики линий связи, способы определения характеристики конкретной линии.
- •18. Применение техники спектрального разложения исходного непериодического сигнала на гармоники. Использование спектрального анализатора для исследования искажений сигнала в линии.
- •19. Амплитудно–частотная характеристика, полоса пропускания, затухание как характеристики степени искажения синусоидальных сигналов в линии связи.
- •20. Пропускная способность линии и ее связь с полосой пропускания.
- •21. Помехоустойчивость и достоверность линии передачи данных.
- •23. Цифровое кодирование. Требования к методам цифрового кодирования.
- •24. Цифровое кодирование. Принципы, достоинства и недостатки методов “Потенциального кода без возвращения к нулю nrz” и “Биполярного кодирования с альтернативной инверсией ami”.
- •25. Цифровое кодирование. Принципы, достоинства и недостатки методов “Биполярного импульсного кодирования”, “Манчестерского кодирования”, “Потенциального кодирования 2b1q”.
- •26. Логическое кодирование. Суть применения логического кодирования наряду со способами цифрового кодирования. Логическое кодирование на основе избыточных кодов.
- •27. Логическое кодирование. Метод скрэмблирования в логическом кодировании.
- •30. Необходимость обеспечения синхронизации между передатчиком и приемником при цифровой передаче. Битовый и кадровый уровень синхронизации. Асинхронный и синхронный режимы передачи.
- •31. Методы передачи кадров канального уровня. Ассинхронные протоколы. Синхронные символьно – ориентированные протоколы и бит – ориентированные протоколы.
- •32. Методы передачи кадров канального уровня. Передача с установлением соединения и без установления соединения. Достоинства и недостатки.
- •33. Методы передачи кадров канального уровня. Необходимость обнаружения и коррекция ошибок. Методы обнаружения ошибок. Методы восстановления искаженных и потерянных кадров.
- •35. Метод коммутации как основной способ совместного использования линий передачи данных. Коммутация каналов, коммутация пакетов, коммутация сообщений. Преимущества и недостатки.
- •36. Общие свойства сетей с коммутацией каналов. Коммутация каналов на основе частотного мультиплексирования. Коммутация каналов на основе разделения времени.
- •38. Достоинства и применение метода коммутации сообщений.
- •39. Общая характеристика протоколов локальных сетей. Влияние требования максимального удешевления и упрощения на реализацию кабельных соединений, логику работы сети.
- •40. Технология Ethernet (802.3). Метод доступа csma/cd. Этапы доступа к среде. Возникновение коллизии.
- •41. Время двойного оборота и распознование коллизий в технологии Ethernet. Расчет максимальной длины сегмента Ethernet на основе расчета времени двойного оборота.
- •42. Максимальная производительность сети Ethernet. Расчет полезной пропускной способности для кадров минимальной и максимальной.
- •46. Оптоволоконный Ethernet . Характеристики стандартов foirl, 10 Base fl, 10 Base fb.
- •49. Правила построения сегментов Fast Ethernet при использовании повторителей. Принцип деления повторителей Fast Ethernet на 2 класса.
- •50. Ограничения сетей Fast Ethernet, построенных на повторителях. Метод методы расширения размеров сетей Fast Ethernet.
- •51. Стандарты физического уровня 100BaseFx, 100BaseTx, 100BaseT4.
- •52. Режим автопереговоров сетевых адаптеров Fast Ethernet. Приоритеты при выборе режима работы сетевого адаптера.
- •53. Общие характеристики технологий Gigabit Ethernet.
- •54. Средства обеспечения диаметра сети 200 м. На разделяемой среде Gigabit Ethernet.
- •55. Стандарты физического уровня 1000BaseТ, 1000BaseSx, 1000BaseLx, 1000BaseLh.
21. Помехоустойчивость и достоверность линии передачи данных.
Помехоустойчивость линии определяет ее способность уменьшать уровень помех, создаваемых во внешней среде, на внутренних проводниках. Помехоустойчивость линии зависит от типа используемой физической среды, а также от экранирующих и подавляющих помехи средств самой линии. Наименее помехоустойчивыми являются радиолинии, хорошей устойчивостью обладают кабельные линии и отличной - волоконно-оптические линии, малочувствительные ко внешнему электромагнитному излучению. Обычно для уменьшения помех, появляющихся из-за внешних электромагнитных полей, проводники экранируют и/или скручивают.
Перекрестные наводки на ближнем конце (Near End Cross Talk - NEXT) определяют помехоустойчивость кабеля к внутренним источникам помех, когда электромагнитное поле сигнала, передаваемого выходом передатчика по одной паре проводников, наводит на другую пару проводников сигнал помехи. Если ко второй паре будет подключен приемник, то он может принять наведенную внутреннюю помеху за полезный сигнал. Показатель NEXT, выраженный в децибелах, равен 10 log Рвых/Рнав, где Рвых - мощность выходного сигнала, Рнав - мощность наведенного сигнала.
Чем меньше значение NEXT, тем лучше кабель. Так, для витой пары категории 5 показатель NEXT должен быть меньше -27 дБ на частоте 100 МГц.
Достоверность передачи данных характеризует вероятность искажения для каждого передаваемого бита данных. Иногда этот же показатель называют интенсивностью битовых ошибок (Bit Error Rate, BER). Величина BER для каналов связи без дополнительных средств защиты от ошибок (например, самокорректирующихся кодов или протоколов с повторной передачей искаженных кадров) составляет, как правило,10-4 - 10-6, в оптоволоконных линиях связи - 10-9. Значение достоверности передачи данных, например, в 10-4 говорит о том, что в среднем из 10000 бит искажается значение одного бита.
Искажения бит происходят как из-за наличия помех на линии, так и по причине искажений формы сигнала ограниченной полосой пропускания линии. Поэтому для повышения достоверности передаваемых данных нужно повышать степень помехозащищенности линии, снижать уровень перекрестных наводок в кабеле, а также использовать более широкополосные линии связи.
22. Методы передачи дискретных данных на физическом уровне. Проблемы передачи дискретных данных по линиям связи с узкой полосой пропускания. Методы аналоговой модуляции. Методы повышения скорости передачи данных на основе аналоговой модуляции.
При передаче дискретных данных по каналам связи применяются два основных типа физического кодирования - на основе синусоидального несущего сигнала и на основе последовательности прямоугольных импульсов. Первый способ часто называется также модуляцией или аналоговой модуляцией, подчеркивая тот факт, что кодирование осуществляется за счет изменения параметров аналогового сигнала. Второй способ обычно называют цифровым кодированием. Эти способы отличаются шириной спектра результирующего сигнала и сложностью аппаратуры, необходимой для их реализации.
При использовании прямоугольных импульсов спектр результирующего сигнала получается весьма широким. Применение синусоиды приводит к спектру гораздо меньшей ширины при той же скорости передачи информации. Однако для реализации синусоидальной модуляции требуется более сложная и дорогая аппаратура, чем для реализации прямоугольных импульсов.
Методы аналоговой модуляции
Аналоговая модуляция является таким способом физического кодирования, при котором информация кодируется изменением амплитуды, частоты или фазы синусоидального сигнала несущей частоты.
При амплитудной модуляции для логической единицы выбирается один уровень амплитуды синусоиды несущей частоты, а для логического нуля - другой. Этот способ редко используется в чистом виде на практике из-за низкой помехоустойчивости, но часто применяется в сочетании с другим видом модуляции - фазовой модуляцией.
При частотной модуляции значения 0 и 1 исходных данных передаются синусоидами с различной частотой - f0 и f1. Этот способ модуляции не требует сложных схем в модемах и обычно применяется в низкоскоростных модемах.
При фазовой модуляции значениям данных 0 и 1 соответствуют сигналы одинаковой частоты, но с различной фазой, например 0 и 180 градусов или 0,90,180 и 270 градусов.