Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры1 (восстановлен).docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
201.28 Кб
Скачать

Источники энергии

Несмотря на многообразие форм существования энергии, только две из них — световая и химическая — пригодны для живых организмов. Организмы, использующие световую энергию, называются фотосинтезируфщими, или фототрофными (photos — свет; trophe — питание); организмы, использующие химическую энергию, называются хемотрофными. Фототрофы содержат пигменты, в том числе некоторые формы хлорофилла, способные поглощать световую энергию и превращать ее в химическую

Фотосинтез (от фото... и синтез), образование высшими растениями, водорослями, фотосинтезирующими бактериями сложных органических веществ, необходимых для жизнедеятельности как самих растений, так и всех др. организмов, из простых соединений (например, углекислого газа и воды) за счёт энергии света, поглощаемой хлорофиллом и др. фотосинтетическими пигментами. Один из важнейших биологических процессов, постоянно и в огромных масштабах совершающийся на нашей планете.

Две стадии фотосинтеза

Процесс фотосинтеза состоит из двух последовательных и взаимосвязанных этапов: светового (фотохимического) и темнового (метаболического). На первой стадии происходит преобразование поглощенной фотосинтетическими пигментами энергии квантов света в энергию химических связей высокоэнергетического соединения АТФ и универсального восстановителя НАДФН — собственно первичных продуктов фотосинтеза, или так называемой «ассимиляционной силы». В темновых реакциях фотосинтеза происходит использование образовавшихся на свету АТФ и НАДФН в цикле фиксации углекислоты и ее последующего восстановления до углеводов.

У всех фотосинтезирующих организмов фотохимические процессы световой стадии фотосинтеза происходят в особых энергопреобразующих мембранах, называемых тилакоидными, и организованы в так называемую электрон-транспортную цепь. Темновые реакции фотосинтеза осуществляются вне тилакоидных мембран (в цитоплазме у прокариот и в строме хлоропласта у растений). Таким образом, световая и темновая стадии фотосинтеза разделены в пространстве и во времени.

27.

ЦИКЛ КРЕБСА (цикл лимонной и трикарбоновой кислот), система биохимических реакций, посредством которой большинство организмов ЭУКАРИОТОВ получают основную энергию в результате окисления пищи. Происходит в КЛЕТКАХ МИТОХОНДРИЙ. Включает несколько химических реакций, в результате которых высвобождается энергия. Этот процесс называется системой ПЕРЕНОСА ЭЛЕКТРОНОВ по аналогии с переходом АДЕНОЗИНТРИФОСФАТА (АТФ) в АДЕНОЗИН ДИФОСФАТ (АДФ). АТФ обеспечивает реакции МЕТАБОЛИЗМА химической энергией. Цикл Кребса важная часть процесса ДЫХАНИЯ и ОБМЕНА ВЕЩЕСТВ клетки. Назван по имени Ханса КРЕБСА.

Цикл Кребса, или цикл лимонной кислоты, — основной по отношению к реакциям, которые происходят в результате окисления пищи для обеспечения энергией митохондрий жи-вых организмов. Энергию по лучают из глюкозы в результате гликолиза, конечным продуктом чего является пируват (пировйноградная кислота), который преобразуется в ацетил коэнзим А, который, в свою очередь, преобразуется в ли монную кислоту. В результате реакций, катализаторами которых являются энзимы, пируват расщепляется на воду и углекислый газ. Энергия, производимая в виде аденозинтрифос-фата (АТФ), преобразуется в аденозиндифосфат (АДФ) В to же время в течение серии окис лительных реакций, известных как электронная транспортам система, большая часть энпр гии накапливается в виде мо лекул АТФ.

Биологическая роль:

Цикл трикарбоновых кислот — центральная часть общего пути катаболизма, циклический биохимический аэробный процесс, в ходе которого происходит превращение двух- и трёхуглеродных соединений, образующихся как промежуточные продукты в живых организмах при распаде углеводов, жиров и белков, до CO2. При этом освобождённый водород направляется в цепь тканевого дыхания, где в дальнейшем окисляется до воды, принимая непосредственное участие в синтезе универсального источника энергии — АТФ.  Цикл Кребса — это ключевой этап дыхания всех клеток, использующих кислород, центр пересечения множества метаболических путей в организме. Кроме значительной энергетической роли циклу отводится также и существенная пластическая функция, то есть это важный источник молекул-предшественников, из которых в ходе других биохимических превращений синтезируются такие важные для жизнедеятельности клетки соединения как аминокислоты, углеводы, жирные кислоты и др. Цикл превращения лимонной кислоты в живых клетках был открыт и изучен немецким биохимиком Хансом Кребсом, за эту работу он (совместно с Ф. Липманом) был удостоен Нобелевской премии (1953 год). У эукариот все реакции цикла Кребса протекают внутри митохондрий, причём катализирующие их ферменты, кроме одного, находятся в свободном состоянии в митохондриальном матриксе, исключение составляет сукцинатдегидрогеназа, которая локализуется на внутренней митохондриальной мембране, встраиваясь в липидный бислой. У прокариот реакции цикла протекают в цитоплазме. При работе цикла Кребса окисляются различные продукты обмена, в частности токсичные недоокисленные продукты распада алкоголя, поэтому стимуляцию цикла Кребса можно рассматривать как меру биохимической детоксикации.

15.

НУКЛЕИНОВЫЕ КИСЛОТЫ - биополимеры, состоящие из остатков фосфорной кислоты, сахаров и азотистых оснований (пуринов и пиримидинов). Имеют фундаментальное биологическое значение, поскольку содержат в закодированном виде всю генетическую информацию любого живого организма, от человека до бактерий и вирусов, передаваемую от одного поколения другому. Нуклеиновые кислоты были впервые выделены из клеток гноя человека и спермы лосося швейцарским врачом и биохимиком Ф.Мишером между 1869 и 1871. Впоследствии было установлено, что существует два типа нуклеиновых кислот: рибонуклеиновая (РНК) и дезоксирибонуклеиновая (ДНК), однако их функции долго оставались неизвестными. В 1928 английский бактериолог Ф. Гриффит обнаружил, что убитые патогенные пневмококки могут изменять генетические свойства живых непатогенных пневмококков, превращая последние в патогенные. В 1945 микробиолог О.Эвери из Рокфеллеровского института в Нью-Йорке сделал важное открытие: он показал, что способность к генетической трансформации обусловлена переносом ДНК из одной клетки в другую, а следовательно, генетический материал представляет собой ДНК. В 1940-1950 Дж. Бидл и Э. Тейтум из Станфордского университета (шт. Калифорния) обнаружили, что синтез белков, в частности ферментов, контролируется специфическими генами. В 1942 Т.Касперсон в Швеции и Ж.Браше в Бельгии открыли, что нуклеиновых кислот особенно много в клетках, активно синтезирующих белки. Все эти данные наводили на мысль, что генетический материал - это нуклеиновая кислота и что она как-то участвует в синтезе белков. Однако в то время многие полагали, что молекулы нуклеиновых кислот, несмотря на их большую длину, имеют слишком простую периодически повторяющуюся структуру, чтобы нести достаточно информации и служить генетическим материалом. Но в конце 1940-х годов Э. Чаргафф в США и Дж. Уайатт в Канаде, используя метод распределительной хроматографии на бумаге, показали, что структура ДНК не столь проста и эта молекула может служить носителем генетической информации.

Есть два типа нуклеиновых кислот: ДНК и РНК. ДНК присутствует в ядрах всех растительных и животных клеток, где она находится в комплексе с белками и является составной частью хромосом. У особей каждого конкретного вида содержание ядерной ДНК обычно одинаково во всех клетках, кроме гамет (яйцеклеток и сперматозоидов), где ДНК вдвое меньше. Таким образом, количество клеточной ДНК видоспецифично. ДНК найдена и вне ядра: в митохондриях ("энергетических станциях" клеток) и в хлоропластах (частицах, где в растительных клетках идет фотосинтез). Эти субклеточные частицы обладают некоторой генетической автономией. Бактерии и цианобактерии (сине-зеленые водоросли) содержат вместо хромосом одну или две крупные молекулы ДНК, связанные с небольшим количеством белка, и часто - молекулы ДНК меньшего размера, называемые плазмидами. Плазмиды несут полезную генетическую информацию, например содержат гены устойчивости к антибиотикам, но для жизни самой клетки они несущественны. Некоторое количество РНК присутствует в клеточном ядре, основная же ее масса находится в цитоплазме - жидком содержимом клетки. Большую ее часть составляет рибосомная РНК (рРНК). Рибосомы - это мельчайшие тельца, на которых идет синтез белка. Небольшое количество РНК представлено транспортной РНК (тРНК), которая также участвует в белковом синтезе. Однако оба этих класса РНК не несут информации о структуре белков - такая информация заключена в матричной, или информационной, РНК (мРНК), на долю которой приходится лишь небольшая часть суммарной клеточной РНК. Генетический материал вирусов представлен либо ДНК, либо РНК, но никогда обеими одновременно.

Химическая структура. Нуклеиновые кислоты - это длинные цепочки, состоящие из четырех многократно повторяющихся единиц (нуклеотидов). Их структуру можно представить следующим образом:

Символ Ф обозначает фосфатную группу. Чередующиеся остатки сахара и фосфорной кислоты образуют сахарофосфатный остов молекулы, одинаковый у всех ДНК, а огромное их разнообразие обусловливается тем, что четыре азотистых основания могут располагаться вдоль цепи в самой разной последовательности. Сахаром в нуклеиновых кислотах является пентоза; четыре из пяти ее углеродных атомов вместе с одним атомом кислорода образуют кольцо. Атомы углерода пентозы обозначают номерами от 1' до 5'. В РНК сахар представлен рибозой, а в ДНК - дезоксирибозой, содержащей на один атом кислорода меньше.

Ген в молекулярной биологии понимают участок ДНК кодирующий либо белок , либо молекулу РНК .

(!!!не все)))

12.

Биогенные амины – это амины, образующиеся в организме в результате метаболизма. Распространение в природе. Синтез биогенных аминов. Физические и химические свойства. Основной физиологический эффект мелатонина. Триптамины, метилтриптамины, этилтриптамины.

I. Процесс декарбоксилирования α – аминокислот ведет к образованию биогенных аминов

В организме этот процесс происходит с участием ферментов декарбоксилаз и кофермента пиридоксальфосфата.

II. Из всех нейронов ЦНС только около 7 тысяч вырабатывают дофамин. Известно несколько дофаминовых ядер, расположенных в стволе мозга.

III. В лабораторных условиях эта реакция протекает при нагревании α – аминокислот в присутствии поглотителей диоксида углерода, например гидроксида бария Ba(OH)2.

IV. Серотонин образуется из аминокислоты триптофана путём её последовательного 5-гидроксилирования ферментом 5-триптофан-гидроксилазой (в результате чего получается 5-гидрокситриптофан, 5-ГТ) и затем декарбоксилирования получившегося 5-гидрокситриптофана ферментом триптофан-декарбоксилазой.

13.

Фосфопротеиды строение, представители, значение ФП это сложные белки, обособленной простетической группы не имеют. Ее роль выполняют остатки фосфорной кислоты, связанные сложноэфирными связями с гидроксильными группами оксиаминокислот: сер, тре, тир.– формулу фрагмента ФП знать см. Материалы, С. 98, показать на табл.  ФП – это полноценные белки с большой молекулярной массой при нагревании не свертываются (термостабильны), в воде не растворимы, но хорошо растворимы в разбавленных растворах солей и щелочей. Имеют кислый характер (ИЭТ ~ 4,7) из-за остатков фосфорной кислоты, поэтому осаждаются кислотами. Это полноценные белки. Значение ФП – они служат пластическим материалом (источники незаменимых аминокислот и фосфора) и играют важную роль в росте организма, поэтому особенно нужны детям. Представители – казеиноген молока (фосфорной кислоты ~ 1%), вителлин, виттелинин и фосвитин – ФП яичного желтка (фосфорной кислоты ~ 10%), овальбумин – ФП яичного белка (10%), ихтуллин – в икре рыб (фосфорной кислоты более 10%). Казеиноген (от лат caseus – сыр) – основной белок молока, составляет около 80% от белков коровьего молока. Казеиноген получают из молока путем осаждения кислотой при рН 4,6 и температуре 20С. Казеиногены – это семейство различных однотипных белков, состоящих из 4 фракций – альфа, кси, бета и гамма. В коровьем молоке идентифицировано до 17 подфракций казеиногена. Из фракций казеиногена особое значение имеет кси казеиноген, с которым связаны процессы сычужного свертывания молока при производстве сыров.

11.

Пути превращения аминокислот в тканях Аминокислоты - основной источник азота для организма млекопитающих. Они являются связующим звеном между процессами синтеза и распада азотсодержащих веществ, в первую очередь белков. За сутки в организме человека обновляется до 400 г белка. В целом период распада всех белков организма человека составляет 80 суток. Необратимо распадается четвертая часть белковых аминокислот (около 100 г). Эта часть возобновляется за счет пищевых аминокислот и эндогенного синтеза - синтеза заменимых аминокислот. В клетках постоянно поддерживается определенный стационарный уровень аминокислот - фонд (пул) свободных аминокислот. Этот фонд обновляется за счет поступления аминокислот и используется для синтеза биологически важных химических компонентов клетки, т.е. можно выделить пути поступления и использования клеточного пула аминокислот. Пути поступления свободных аминокислот, образующих аминокислотный фонд в клетке: 1 ^ Транспорт аминокислот из внеклеточной жидкости - транспортируются аминокислоты, которые всасываются в кишечнике после гидролиза пищевых белков. 2 Синтез заменимых аминокислот - в клетке из промежуточных продуктов окисления глюкозы и цикла лимонной кислоты могут синтезироваться аминокислоты. К заменимым аминокислотам относятся: аланин, аспарагиновая кислота, аспарагин, глутаминовая кислота, глутамин, пролин, глицин, серин.

  1. ^ Внутриклеточный гидролиз белков - это основной путь поступления аминокислот. Гидролитическое расщеп–ление тканевых белков катализируют лизосомальные протеазы. При голодании, онкологических и инфекцион–ных заболеваниях этот процесс усиливается. 

^ Пути использования аминокислотного фонда: 1) Синтез белков и пептидов - это основной путь потребления аминокислот - 75-80% аминокислот клетки идет на их синтез. 2) ^ Синтез небелковых азотсодержащих соединений: - пуриновых и пиримидиновых нуклеотидов; - порфиринов; - холина; - креатина; - меланина; - некоторых витаминов и коферментов (НАД, КоА, фолиевая кислота); - биогенных аминов (гистамин, серотонин); - гормонов (адреналин, тироксин, трийодтиронин); - медиаторов (норадреналин, ацетилхолин, ГАМК). 3) ^ Синтез глюкозы с использованием углеродных скелетов гликогенных аминокислот (глюконеоге–нез). 4) Синтез липидов с использованием ацетильных остатков углеродных скелетов кетогенных аминокислот. 5) ^ Окисление до конечных продуктов обмена (СО2, Н2О, NH3) - это один из путей обеспечения клетки энергией - до 10% общих энергетических потребностей. Все аминокислоты, которые не используются в синтезе белков и других физиологически важных cоединений, подвергаются расщеплению. Существую общие и специфические пути метаболизма аминокислот. К общим путям катаболизма аминокислот относятся: 1) трансаминирование; 2) дезаминирование;