
- •Выпускная квалификационная работа бакалавра
- •О пределения
- •Обозначения и сокращения
- •Введение
- •1Физико-химические свойства теплоизоляционных материалов
- •1.1Характеристики теплоизоляционных материалов.
- •1.2 Теплопроводность при нестационарном режиме
- •1.2.1Постановка задачи нестационарной теплопроводности
- •1.2.2 Аналитический метод решения (метод Фурье)
- •1.3Влияние пористости вещества на процессы охлаждения
- •1.4 Композиционные теплозащитные материалы
- •1.4.1 Основные определения
- •1.4.2 Требования к композиционным материалам
- •1.5 Методы синтеза наночастиц
- •1.5.1 Диспергирование
- •1.5.2 Конденсация
- •1.5.3 Основы золь-гель технологии
- •1.6 Методы термического анализа
- •1.7 Анализ высокоэффективных теплоизоляционных и теплозащитных материалов
- •1.7.1 Microtherm
- •1.7.2 Теплоизоляционные материалы производства научно-производственного предприятие «Технология» (г. Обнинск)
- •1.7.3 Продукция ооо «Термокерамика» (г. Москва)
- •2 Методы термического анализа теплозащитных материалов и оборудование для изучения физико-химических свойств теплозащитных материалов
- •2.1 Принцип действия и устройство измерительной системы дск
- •2.1.2 Методика расчета коэффициента теплопроводности
- •2.1.3 Подготовка тигля
- •2.1.4 Подготовка образцов и метод измерения
- •2.2 Прибор для измерения коэффициента теплопроводности зондовым методом - мит 1
- •3 Экспериментальные результаты и их практическая реализация
- •3.1 Выбор волокнистых материалов с низким коэффициентом теплопроводности
- •3.2 Подбор и изготовление композиционных материалов
- •3.3Анализ полученных композиционных смесей
- •3.4 Прессование конструкционных деталей из композиционной смеси
- •3.5 Определение характеристик теплоизоляционных материалов
- •3.6 Получение золя кремниевой кислоты ионообменным способом
- •Заключение
- •Список использованных источников
2 Методы термического анализа теплозащитных материалов и оборудование для изучения физико-химических свойств теплозащитных материалов
2.1 Принцип действия и устройство измерительной системы дск
В
методе дифференциально-сканирующей
калориметрии (ДСК) теплоту определяют
через тепловой поток – производную
теплоты по времени. Тепловые потоки
измеряются по разнице температур в двух
точках измерительной системы в один
момент времени Φ~ΔT =T(х2)−T(x1)
= f (x). Измерения проводится как в
изотермических условиях, так и в
динамическом режиме при программируемом
изменении температуры оболочки
(нагревателя) (калориметры такого типа
называют «сканирующими»). На рис.2.1
представлен прибор ДСК
Рисунок 2.1 - Дифференциально-сканирующий калориметр (ДСК)
В современных приборах предусмотрена возможность задавать различные температурные программы.
Линейное нагревание/охлаждение с заданной скоростью β: TF= T0+ βt, где TF –температура нагревателя (furnace, F), T0 – начальная температура измерительной системы, β – скорость изменения температуры нагревателя, t – время. Скорость изменения температуры может варьироваться в широких пределах (например, от 0.001 до 100º/мин).
Термомодулированный режим (TM-DSC). На линейное изменение температурынакладываются периодические колебания (ступеньки, зубцы, синусоида: TF= T0+ βt+ ТАsin(ωt) , где TА – амплитуда и
ω – частота колебаний температуры).
Комбинация различных температурных сегментов (изотермических, динамических, модулированных).
Все ДСК (рис. 2.2) имеют две измерительные ячейки: одна предназначена для исследуемого образца (sample, S), в другую – ячейку сравнения (reference, R), помещают либо пустой тигель, либо тигель с образцом сравнения – эталоном (инертным в заданном диапазоне условий веществом, по теплофизическим свойствам близким к образцу). Ячейки конструируют максимально симметрично (одинаковые тигли, одинаковые сенсоры, одинаковое расстояние от нагревателя (furnace, F) до сенсора и т.д.) [22]. Экспериментально измеряется временная зависимость разницы температур между ячейкой с образцом и ячейкой сравнения.
Рисунок 2.2. - Схема измерительной системы ДСК
2.1.1 Определения коэффициента теплопроводности методом ДСК
Метод ДСК позволяет определить коэффициент теплопроводности полимеров и других проводящих тепло материалов с точностью 10–20%.
При этом анализируется процесс плавления чистого металла, находящегося на верхней поверхности цилиндра или диска из изучаемого материала.
Хакворт и Ван-Райен [23] предложили метод определения коэффициента теплопроводности твердых материалов. В этом методе кусочек чистого металла (например, индия или галлия) помещается на верхнюю круговую поверхность образца в форме прямого цилиндра или диска, а затем образец (без тигля) помещается непосредственно в измерительную ячейку ДСК анализатора. В процессе нагревания достигается точка плавления металла, и его температура остается постоянной, пока весь металл не расплавится. Таким образом, температура верхней поверхности диска в этот момент постоянна и известна. Температура нижней поверхности диска и подводимый к ней тепловой поток измеряются ДСК анализатором. Из известных разности температур между двумя поверхностями диска и потока тепла вычисляется теплопроводность образца.