Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Khimia_Ekzamen(1).docx
Скачиваний:
0
Добавлен:
01.02.2020
Размер:
1.18 Mб
Скачать

18 Объединенный газовый закон

Объединенный газовый закон

Объединяя законы Бойля - Мариотта и Гей-Люссака (уравнения 1 и 2), можно получить следующее уравнение:

 (3)

которое является математическим выражением объединенного газового закона, или закона состояния газов. Он позволяет вычислить, например, объем газа при определенных температуре и давлении, если известен его объем при других значениях температуры и давления.

Объединенный газовый закон можно также записать в другой форме:

Точное значение постоянной в правой части этого уравнения зависит от количества газа. Если количество газа равно одному молю (см. гл. 4), то соответствующая постоянная обозначается буквой R и называется молярная газовая постоянная, или просто газовая постоянная. Если давление выражено в атмосферах, постоянная R имеет значение

R = 8,314 Дж*К* моль-1

Объединенный газовый закон для одного моля газа приобретает вид

где Vm- объем одного моля газа. Для п молей газа получается уравнение

 (4)

В такой форме объединенный газовый закон называется уравнением состояния идеального газа. Уравнение состояния это уравнение, связывающее между собой параметры состояния газа-давление, объем и температуру.

Газ, который полностью подчиняется уравнению состояния идеального газа, называется идеальный газ. Такой газ не существует в действительности. Реальные газы хорошо подчиняются уравнению состояния идеального газа при низких давлениях и высоких температурах. Отклонения в поведении реальных газов от предписываемш уравнением состояния идеального газа подробно обсуждаются ниже.

Вычисление относительной молекулярной массы с помощью уравнения состояние идеального газа. Уравнение состояния идеального газа позволяет проводить прямые вычисления относительной молекулярной массы газа M1. Введем понятие относительной молекулярной массы, основываясь на уже знакомом нам (из гл. 1) определении относительной атомной массы A1. Для газа, состоящего из простых молекул, относительная молекулярная масса представляет собой сумму относительных атомных масс всех атомов, входящих в молекулу. Например, для диоксида углерода

Относительная молекулярная масса, выраженная в граммах на моль, называется молярной массой (см. гл. 4). Следовательно, молярная масса CO2 равна 44 г/моль. Два моля CO2 имеют массу 88 г, а и молей-массу п -44 г. В общем случае можно записать

 

где n-количество вещества в молях (т.е. число молей данного вещества), т-масса вещества в граммах, a M-его молярная масса.

Подстановка полученного выражения для п в уравнение состояния идеального газа (4) дает

 (5)

Это уравнение позволяет, зная массу и объем газа при определенных температуре и давлении, вычислить его молярную массу М. А посколькуM = M (г/моль), то полученный результат непосредственно дает относительную молекулярную массу М.

19Твердые тела, их признаки и некоторые свойства

Часто твердыми называют тела, которые сохраняют свою форму и объем. Однако с физической точки зрения по этим признакам бывает трудно отличить твердое и жидкое состояния вещества.

Так, внешне могут быть твердыми, а по строению относиться к жидкостям аморфные тела (от греческогоamorphos – бесформенный, a – отрицательная частица и morphe – форма). Молекулы в аморфных телах расположены беспорядочно, физические свойства вещества одинаковы по всем направлениям. Понятия температуры плавления для аморфных тел не существует. Вместо него вводится несколько расплывчатое понятие температуры размягчения.

Особым классом веществ, которые по внешним признакам также могут походить на твердые тела, являются полимеры.

Полимеры (от греческого polymeres – состоящий из многих частей, от poly – много и meros– доля, часть) – это соединения с высокой молекулярной массой, молекулы которых состоят из большого числа регулярно и нерегулярно повторяющихся одинаковых или различных звеньев.

К природным полимерам относятся натуральный каучук, целлюлоза, белки, природные смолы. Примером синтетических полимеров являются полистирол, полиэтилен, сложные полиэфиры.

Полимеры используются в производстве пластмасс, резины, лаков, клеев, волокон.

Истинно же твердые тела – это кристаллы, одной из характерных особенностей которых является правильность их внешнего вида.

Приходится только удивляться совершенству формы снежинок и восхищаться их красотой.

Если насыщенный раствор гипосульфита – вещества, используемого в фотографии для закрепления изображений, на несколько дней оставить в открытой ванночке, то на ее дне образуются крупные кристаллы, также довольно правильной формы.

Правильную форму имеют и кристаллы поваренной соли, сахара.

Естественной формой кристаллов являются многогранники с плоскими гранями и постоянными для каждого вещества углами между ними.

Форма кристаллов различных веществ неодинакова. Но кристаллы одного и того же вещества могут быть различного цвета. Например, кристаллы кварца бывают бесцветными, золотистыми, розовыми, бледно-сиреневыми. В зависимости от цвета, им дают разные названия. Кристаллы кварца, например, могут называться горным хрусталем, дымчатым горным хрусталем, аметистом. С точки зрения ювелира многие кристаллы одного и того же вещества могут отличаться принципиальным образом. С точки зрения физика различия между ними вообще может не существовать, поскольку подавляющее количество свойств разноцветных кристаллов одного и того же вещества одинаково.

Физические свойства кристалла определяются не его цветом, а внутренним строением. Очень яркой иллюстрацией этого утверждения является различие многих свойств алмаза и графита, обладающих одинаковым химическим составом.

Одиночные кристаллы называются монокристаллами. Некоторые вещества, такие, например, как горный хрусталь, могут образовывать весьма большие монокристаллы, иногда очень правильной формы.

Особенностью многих монокристаллов является анизотропия – различие физических свойств в разных направлениях.

Анизотропия кристаллов тесно связана с их симметрией. Чем ниже симметрия кристалла, тем ярче выражена анизотропия.

Возьмем две пластинки, вырезанные из кристалла кварца в разных плоскостях. Капнем на пластинки воск и дадим ему застыть, после чего прикоснемся к образовавшимся восковым пятнам раскаленной иглой. По форме расплавившегося воска можно сделать вывод о том, что пластинка, вырезанная из кристалла в вертикальной плоскости, имеет разную теплопроводность в разных направлениях.

Если из большого куска льда вырезать два одинаковых бруска во взаимно перпендикулярных направлениях, положить их на две опоры и нагрузить, то бруски будут вести себя различным образом. Один брусок при увеличении нагрузки будет медленно прогибаться. Другой до некоторого значения нагрузки будет сохранять свою форму, а затем переломится.

Аналогичным образом можно говорить не только об анизотропии теплопроводности, прочности, но и других тепловых, механических, а также электрических, оптических свойств монокристаллов.

Большинство твердых тел имеет поликристаллическую структуру, то есть состоит из множества хаотичным образом расположенных кристаллов и анизотропией физических свойств не обладает.

20 Жидкости занимают промежуточное положение между газо­образными и твердыми веществами. При температурах, близких к температурам кипения, свойства жидкостей приближаются к свойствам газов; при температурах, близких к температурам плавления, свойства жидкостей приближаются к свойствам твер­дых веществ. Если для твердых веществ характерна строгая упо­рядоченность частиц, распространяющаяся на расстояния до со­тен тысяч межатомных или межмолекулярных радиусов, то в жидком веществе обычно бывает не более нескольких десятков упорядоченных частиц - объясняется это тем, что упорядоченность между частицами в разных местах жидкого вещества так же быстро возникает, как и вновь «размывается» тепловым колебанием частиц. Вместе с тем общая плотность упаковки частиц жидкого вещества мало отличается от твердого вещества - поэтому их плотность близка к плотности твердых тел, а сжимаемость очень мала. Например, чтобы уменьшить объем, занимаемый жидкой водой, на 1%, требуется приложить давление ~ в 200 атм, тогда как для такого же уменьшения объема газов требуется давление порядка 0,01 атм. Следовательно, сжимаемость жид­костей примерно и 200 : 0,01 = 20000 раз меньше сжимаемости газов.  Выше отмечалось, что жидкости имеют определенный собственный объем и принимают форму сосуда, в котором находятся; эти их свойства значительно ближе к свойствам твердого, чем газообразного вещества. Большая близость жидкого состояния к твердому подтверждается также данными по стандартным энтальпиям испарения ∆Н°исп и стандартным энтальпиям плавления ∆Н°пл. Стандартной энтальпией испарения называют количество теплоты, необходимое для превращения 1 моль жидкости в пар при 1 атм (101,3 кПа). То же количество теплоты выделяется при конденсации 1 моль пара в жидкость при 1 атм. Количество теплоты, расходуемое на превращение 1 моль твердого тела в жидкость при 1 атм, называют стандартной энтальпией плавления (то же количество теплоты высвобождается при «замерзании» («отвердевании») 1 моль жидкости при 1 атм). Известно, что ∆Н°пл намного меньше соответствующих значений ∆Н°исп, что легко понять, поскольку переход из твердого состояния в жидкое сопровождается меньшим нарушением межмолекулярного притя­жения, чем переход из жидкого в газообразное состояние.  Ряд других важных свойств жидкостей больше напоминает свойства газов. Так, подобно газам жидкости могут течь - это их свойство называется текучестью. Сопротивляемость течению определяется вязкостью. На текучесть и вязкость влияют силы притяжения между молекулами жидкости, их относительная мо­лекулярная масса, а также целый ряд других факторов. Вязкость жидкостей ~ в 100 раз больше, чем у газов. Так же, как и газы, жидкости способны диффундировать, хотя и гораздо медленнее, поскольку частицы жидкости упакованы гораздо плотнее, чем частицы газа.  Одно из важнейших свойств именно жидкости - ее поверхностное натяжение (это свойство не присуще ни газам, ни твер­дым веществам). На молекулу, находящуюся в жидкости, со всех сторон равномерно действуют межмолекулярные силы. Однако на поверхности жидкости баланс этих сил нарушается, и вследст­вие этого «поверхностные» молекулы оказываются под действием некой результирующей силы, направленной внутрь жидкости. По этой причине поверхность жидкости оказывается в состоянии натяжения. Поверхностное натяжение - это минимальная сила, сдерживающая движение частиц жидкости в глубину жидкости и тем самым удерживающая поверхность жидкости от сокращения. Именно поверхностным натяжением объясняется «каплевидная» форма свободно падающих частиц жидкости. 

21. Простые вещества. Молекулы состоят из атомов одного вида (атомов одного элемента). В химических реакциях не могут разлагаться с образованием других веществ.(металлы и неметаллы)

 

Сложные вещества (или химические соединения). Молекулы состоят из атомов разного вида (атомов различных химических элементов). В химических реакциях разлагаются с образованием нескольких других веществ.(основания,оксиды,кислоты,соли)

Основания - сложные вещества, в которых атомы металлов соединены с одной или несколькими гидроксильными группами (с точки зрения теории электролитической диссоциации, основания - сложные вещества, при диссоциации которых в водном растворе образуются катионы металла (или NH4+) и гидроксид - анионы OH-).

 Классификация. Растворимые в воде (щёлочи) и нерастворимыеАмфотерные основания проявляют также свойства слабых кислот.

Оксиды - это сложные вещества, состоящие из двух элементов, один из которых кислород.

несолеобразующие-CO, N2O, NO

Солеобразующие

Основные -это оксиды металлов, в которых последние проявляют небольшую степень окисления +1, +2 Na2O; MgO; CuO

 

Амфотерные (обычно для металлов со степенью окисления  +3, +4). В качестве гидратов им соответствуют амфотерные гидроксиды ZnO; Al2O3; Cr2O3; SnO2

 

Кислотные -это оксиды неметаллов и металлов со степенью окисления  от +5 до +7 SO2; SO3; P2O5; Mn2O7; CrO3

 

Основным оксидам соответствуют основания, кислотным – кислоты, амфотерным – и те и другие

Кислоты - сложные вещества, состоящие из атомов водорода и кислотного остатка. (С точки зрения теории электролитической диссоциации: кислоты - электролиты, которые при диссоциации в качестве катионов образуют только H+).

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]