
- •11 Типы химических реакций.
- •Органическая химия.
- •Реакции замещения.
- •Неорганическая химия.
- •Органическая химия.
- •Реакции обмена.
- •Неорганическая химия
- •Природа переносимых частиц.
- •Окислительно-восстановительные реакции.
- •Лиганднообменные реакции.
- •Возможность протекания реакции в прямом и обратном направлении. Необратимые реакции.
- •Обратимые реакции.
- •13 Агрегатное состояние вещества
- •15 Молекулярно-кинетическая теория
- •16 Стехиометрия
- •18 Объединенный газовый закон
- •Классификация
- •Классификация По заряду комплекса
- •По числу мест, занимаемых лигандами в координационной сфере
- •По природе лиганда
- •27. Квантово-механическая модель атома
- •28. Уравнение Шрёдингера
- •Энергетические уровни и подуровни
- •48) Гесса закон
- •Второй закон
- •Третий закон
- •50) Гиббса энергия
- •62. Свойства коллоидных растворов
- •1. Молекулярно-кинетические свойства.
- •II. Оптические свойства
- •III. Электрические свойства коллоидных растворов
- •65. Явление адсорбции. Типы адсорбции.
- •66. Основные теории и закономерности адсорбционных процессов
- •69.Растворы
- •Истинные и коллоидные растворы [править]
- •Растворение [править]
- •Растворы электролитов и неэлектролитов [править]
- •Растворы полимеров [править]
- •Концентрация растворов
- •70. Теории образования растворов: физическая, химическая и современная
- •71. Способы выражения содержания растворенного вещества (концентрации раствора). Понятия
- •Пересчет концентраций растворов из одних единиц в другие
- •Первый закон Рауля [править]
- •Отклонения от закона Рауля [править]
- •Второй закон Рауля [править]
- •Понижение температуры кристаллизации растворов [править]
- •Повышение температуры кипения растворов [править]
- •Криоскопическая и эбулиоскопическая константы [править]
- •Растворы электролитов [править]
- •Значение осмоса [править]
- •Вода как основа жизни на Земле, ее физические и химические свойства с точки зрения
- •Физические и химические свойства воды
- •76. Понятие жесткости воды и виды её. Способы определения и устранения жесткости воды
- •Итак, как уменьшить жесткость воды кипячением?
- •Реагентные способы устранения жесткости воды
- •Безреагентные способы устранения жесткости воды
- •Не органич: Очистка воды от ионов металлов
- •Очистка воды от органических веществ и растворов солей
- •Очистка от радиоактивных отходов
- •Химическое равновесие в воде: диссоциация (автопротолиз) и ионное произведение воды
- •Известные способы диссоциации воды:
- •Современные теории кислот и оснований.
- •Растворы электролитов. Теория электролитической диссоциации. Константа и степень
- •93. Электрохимическая система
Повышение температуры кипения растворов [править]
Жидкость кипит при той температуре, при которой общее давление насыщенного пара становится равным внешнему давлению. Если растворённое вещество нелетуче (то есть давлением его насыщенных паров над раствором можно пренебречь), то общее давление насыщенного пара над раствором равно парциальному давлению паров растворителя. В этом случае давление насыщенных паров над раствором при любой температуре будет меньше, чем над чистым растворителем, и равенство его внешнему давлению будет достигаться при более высокой температуре. Таким образом, температура кипения раствора нелетучего вещества Tb всегда выше, чем температура кипения чистого растворителя при том же давлении T°b.
Повышение температуры кипения бесконечно разбавленных растворов нелетучих веществ не зависит от природы растворённого вещества и прямо пропорционально моляльной концентрации раствора
Криоскопическая и эбулиоскопическая константы [править]
Коэффициенты пропорциональности К и Е в приведённых выше уравнениях — соответственно криоскопическая и эбулиоскопическая постоянные растворителя, имеющие физический смысл понижения температуры кристаллизации и повышения температуры кипения раствора с концентрацией 1 моль/кг. Для воды они равны 1.86 и 0.52 K·моль−1·кг соответственно. Поскольку одномоляльный раствор не является бесконечно разбавленным, второй закон Рауля для него в общем случае не выполняется, и величины этих констант получаютэкстраполяцией зависимости из области малых концентраций до m = 1 моль/кг.
Для водных растворов в уравнениях второго закона Рауля моляльную концентрацию иногда заменяют молярной. В общем случае такая замена неправомерна, и для растворов,плотность которых отличается от 1 г/см³, может привести к существенным ошибкам.
Второй закон Рауля даёт возможность экспериментально определять молекулярные массы соединений, неспособных к диссоциации в данном растворителе; его можно использовать также для определения степени диссоциации электролитов.
Растворы электролитов [править]
Законы Рауля не выполняются для растворов (даже бесконечно разбавленных), которые проводят электрический ток — растворов электролитов. Для учёта этих отклонений Вант-Гоффвнёс в приведённые выше уравнения поправку — изотонический коэффициент i, неявно учитывающий диссоциацию молекул растворённого вещества:
;
Неподчинение растворов электролитов законам Рауля и принципу Вант-Гоффа послужили отправной точкой для создания С. А. Аррениусом теории электролитической диссоциации.
Упругость Насыщения - упругость водяного пара, максимально возможная приданной температуре. Она тем больше, чем выше температура воздуха. По еедостижении начинается конденсация водяного пара.
Эбуллиоскопическая константа – разница между температурой кипения раствора и температурой чистого растворителя.
Криоскопическая константа – разница между температурой замерзания раствора и температурой чистого растворителя.
74. Явление осмоса, его роль в биологических системах. Осмотическое давление. Закон Вант-Гоффа.
Растворы изотонические, гипо- и гипертонические.
Явление осмоса наблюдается в тех средах, где подвижность растворителя больше подвижности растворённых веществ. Важным частным случаем осмоса является осмос через полупроницаемую мембрану. Полупроницаемыми называют мембраны, которые имеют достаточно высокую проницаемость не для всех, а лишь для некоторых веществ, в частности, для растворителя. (Подвижность растворённых веществ в мембране стремится к нулю). Как правило, это связано с размерами и подвижностью молекул, например, молекула воды меньше большинства молекул растворённых веществ. Если такая мембрана разделяет раствор и чистый растворитель, то концентрация растворителя в растворе оказывается менее высокой, поскольку там часть его молекул замещена на молекулы растворённого вещества (см. Рис. 1). Вследствие этого, переходы частиц растворителя из отдела, содержащего чистый растворитель, в раствор будут происходить чаще, чем в противоположном направлении. Соответственно, объём раствора будет увеличиваться (а концентрация вещества уменьшаться), тогда как объём растворителя будет соответственно уменьшаться.