
- •Содержание.
- •I.Нефть газ на карте мира
- •1.Динамика мировой нефтегазодобычи
- •2.Мировые запасы нефти и газа
- •3. Месторождения-гиганты Классификация газовых месторождении
- •Крупные газовые месторождения
- •Классификация нефтяных месторождении
- •Крупнейшие нефтяные месторождения мира
- •II. История нефтяной и газовой промышленности и трубопроводного транспорта
- •4.История нефтяной промышленности России
- •5. История газовой промышленности России
- •6. История транспорта нефти и газа России
- •7. Транспорт нефти и газа на территории Удмуртской республики, Пермского края и республики Башкортостан
- •8. Нефтяная промышленность Волго-Уральского региона
- •III. Основы геологии нефти и газа
- •9. Происхождение нефти
- •10. Происхождение газа
- •11. Внутреннее строение Земли
- •12. Строение земной коры
- •13. Пласты-коллекторы. Пористость и проницаемость.
- •14. Основные элементы нефтегазовой залежи.
- •15. Месторождения нефти и газа
- •16.Условия залегания нефти, газа и воды в горных породах.
- •17. Давление в земной коре.
- •18.Температура в нефтяных пластах
- •19.Породы, содержащие нефть и газ. Природные резервуары. Ловушки.
- •20. Классификации ресурсов и запасов нефти и газа
- •21.Подсчет запасов углеводородов
- •22. Основные физико-химические свойства нефти.
- •23. Попутный (нефтяной) газ и его основные физико-химические свойства.
- •24. Природный газ и его основные физико-химические свойства.
- •25.«Сланцевый» газ.
- •26.Пластовая энергия и силы, действующие в нефтяных и газовых пластах.
- •27.Режим работы нефтяных и газовых залежей. Водонапорный режим.
- •28. Режим работы нефтяных и газовых залежей. Упруговодонапорный режим
- •29. Режим работы нефтяных и газовых залежей. Газонапорный режим.
- •30. Режим работы нефтяных и газовых залежей. Режим растворенного газа.
- •31. Режим работы нефтяных и газовых залежей. Гравитационный режим.
- •32. Приток жидкости и газа к скважинам
- •33.Поиски и разведка нефтяных и газовых месторождений
- •34.Цели и задачи исследования скважин и пластов
- •35. Методы геофизических исследований, применяемых при бурении скважин
- •36.Методы исследования, применяемые при разработке нефтяных и газовых месторождений
- •37. Исследование скважин при неустановившихся режимах.
- •38. Исследование нагнетательных скважин.
- •39. Изучение профилей притока и поглощения пластов добывающих и нагнетательных скважин.
- •40. Понятие о термодинамических методах исследования скважин.
- •41. Гидропрослушивание пластов.
- •42. Выбор оборудования и приборов для исследования.
- •IV. Бурение нефтяных и газовых скважин
- •43. Бурение нефтяных и газовых скважин. Понятие о скважине.
- •44. Бурение нефтяных и газовых скважин. Способы бурения скважин.
- •45. Цикл строительства скважин
- •46. Бурение горизонтальных скважин и боковых горизонтальных стволов.
- •47. Сверхглубокое бурение
- •V. Добыча нефти и газа
- •48. Основы подъема газожидкостной смеси из забоя скважины.
- •49. Добыча нефти и газа. Фонтанная эксплуатация скважин.
- •50. Добыча нефти и газа. Газлифтная эксплуатация скважин.
- •1) Фонтанный, когда нефть извлекается из скважин самоизливом;
- •2) Компрессорный(газлифтный) - с помощью энергии сжатого газа, вводимого
- •3) Насосный - извлечение нефти с помощью насосов различных типов.
- •51. Добыча нефти и газа. Насосная эксплуатация скважин.
- •52. Основы разработки нефтяных месторождений
- •53. Основы разработки газовых месторождений.
- •54. Стадии разработки залежи.
- •55. Призабойная зона пласта, ее проницаемость. Причины ухудшения проницаемости и методы ее увеличения.
- •56.Классификация и области применения методов увеличения проницаемости призабойной зоны пласта
- •57. Кислотные обработки призабойной зоны пласта. Цель и механизм ведения процесса.
- •58.Гидравлический разрыв пласта. Цель и механизм ведения процесса.
- •59.Щелевая разгрузка родуктивного пласта в призабойной зоне пласта. Цель и механизм ведения процесса.
- •60. Основные виды заводнения скважин
- •61. Нестационарное (циклическое) заводнение.
- •62.Воздействие на нефтяной пласт теплом. Паротепловое воздействие и воздействие горячей водой.
- •63. Холодное полимерное воздействие на залежь высоковязкой нефти в карбонатных коллекторах. Цель и механизм ведения процесса.
- •64.Циклическое внутрипластовое полимерно-термическое воздействие (цптв).
- •65.Импульсно-дозированное воздействие (идтв) на пласт.
- •66.Импульсно-дозированное тепловое воздействие с паузой (идтв(п)).
- •67. Термоциклическое воздействие на пласт (твптв).
- •68. Технология приготовления полимерного раствора для закачки в пласт.
- •69. Термополимерное воздействие на залежь высоковязкой нефти
- •VI. Основы сбора и подготовки нефти и газа на промыслах
- •70.Принципиальная технологическая схема сбора и подготовки продукции нефтяных скважин на промыслах.
- •71. Сбор и подготовка газа и газового конденсата.
- •VII. Основы транспортирования нефти и газа по магистральным трубопроводам
- •72. Принципиальная технологическая схема магистрального трубопроводного транспорта нефти.
- •73. Принципиальная технологическая схема магистрального трубопроводного транспорта газа.
- •74. Хранение и распределение газа.
- •Vш. Основные технологии переработки нефти
- •75.Основные этапы переработки нефти.
- •76. Первичная переработка нефти
- •77.Вторичная переработка нефти
- •78.Товарное производство
- •79. Современное состояние нефтепереработки в России
- •IX.Экологические мероприятия при разведке, бурении, добыче и транспортировке углеводородов.
- •80. Соблюдение экологических мер при бурении, поисках, разведке и разработке
- •81.Экологические мероприятия при транспортировке, хранении и переработке
- •82.Особенности нефтезагязнений при добыче нефти в Удмуртской Республике
- •Глоссарий
- •Водонефтяной контакт – поверхность, разделяющая нефть и воду в нефтеносном пласте. В процессе эксплуатации залежи нефти происходит перемещение внк.
- •Геолого – геофизический разрез - геологический разрез скважины, дополненный типичной каротажной диаграммой. Обычно разрез дополняют типичными кривыми электрического каротажа.
- •Давление насыщения нефти газом - давление, при котором определенный объем газа находится в растворенном состоянии в нефти.
- •Классификация скважин
74. Хранение и распределение газа.
Промышленными и коммунальными потребителями использование газа в течение суток, месяца и года неравномерно. Поскольку газ по газопроводу подается постоянно в одном и том же количестве, то с учетом разных факторов в одни периоды времени, возможно, возникновение его недостатка, а в другие периоды образуются избытки.
Для того, чтобы газоснабжение было стабильным, излишки газа, возникающие в определенное время года, необходимо где-то аккумулировать, чтобы можно было его подавать в газовую систему в период максимального газопотребления.
Для компенсации неравномерного газопотребления используют специальные сосуды большого объема-газгольдеры и специальные подземные хранилища, создаваемые в горных породах.
Газго́льдер представляет собой большой резервуар для хранения природного, биогаза, или сжиженного нефтяного газа. Различают газгольдеры переменного и постоянного объёма. Газгольдеры переменного объёма хранят газ при давлении, близком к атмосферному и температуре окружающей среды. Объём контейнера изменяется с изменением количества хранимого газа, для больших газгольдеров он может достигать 50 000 м³ при диаметре цилиндрического хранилища 60 м. Газгольдеры могут изготавливаться из железобетона, стали или резины.Железобетонные или стальные газгольдеры мокрого типа состоят из вертикального цилиндрического бассейна, наполненного водой, и открытого снизу колокола, поднимающегося при увеличении количества газа. В поршневых (сухих) газгольдерах бассейн отсутствует, а объём регулируется перемещением плотно подогнанного к нижнему резервуару поршня. Газгольдеры переменного объёма использовались не столько для долговременного хранения газа, сколько для поддержания давления газа в безопасных пределах при его потреблении. Газгольдеры постоянного объёма представляют собой цилиндрические или сферические стальные резервуары и способны хранить газ при давлении до 1,8 МПа.
Газгольдеры постоянного объема выпускаются различными по объему и исполнению:
газгольдеры на основе бытовых пропановых баллонов (две группы 50-ти литровых баллонов по 1-50 баллонов в группе — объемом от 100 до 5000 литров);
цилиндрические однообъемные газгольдеры для подземной установки на дачах или загородных участках (от 2,7 до 10 м3, либо 20 м3);
газгольдеры надземные или подземные для промышленных объектов или коттеджных поселков (хранилища от 20 до 50 м3).
На рис. 53 показаны современные газгольдеры постоянного объёма
Рис.53 Современные газгольдеры постоянного объёма
Подземное хранилище газа (ПХГ) — это комплекс инженерно-технических сооружений в пластах-коллекторах геологических структур, горных выработках, а также в выработках-емкостях, созданных в отложениях каменных солей, предназначенных для закачки, хранения и последующего отбора газа, который включает участок недр, ограниченный горным отводом, фонд скважин различного назначения, системы сбора и подготовки газа, компрессорные цеха. ПХГ сооружаются вблизи трассы магистральных газопроводов и крупных газопотребляющих центров для возможности оперативного покрытия пиковых расходов газа. Всего в мире действует более 600 подземных хранилищ газа общей активной емкостью порядка 340 млрд м.Наибольший объем резерва газа хранится в ПХГ, созданных на базе истощенных газовых и газоконденсатных месторождений. Менее емкими хранилищами являются соляные каверны, есть также единичные случаи
создания ПХГ в кавернах твердых пород.
Первая в мире опытная закачка газа в истощенное газовое месторождение была проведена в 1915 г. в Канаде (месторождение Уэлленд-Каунти), первое промышленное ПХГ емкостью 62 млн м. было создано в 1916 г. В США (газовое месторождение Зоар, район г. Буффало). В России первое ПХГ в истощенном месторождении было создано в 1958 г. на базе мелких выработанных залежей газа месторождений Куйбышевской (ныне
Самарской) области. Успешное проведение закачки и последовавший отбор газа способствовали усилению работ в области подземного хранения газа по всей стране. В том же году началась закачка газа в Елшанское (Саратовская область) и в Аманакское (Куйбышевская область) истощенные газовые месторождения. В 1979 г.начато создание крупнейшего в мире хранилища в истощенном газовом месторождении - Северо-Ставропольского Ставропольский край).
Первое ПХГ в водоносном пласте было создано в 1946 г в В США — ПХГ Doe Run Upper (штат Кентукки). В СССР первое газохранилище в водоносном пласте было создано в 1959 г в районе г. Калуга — Калужское ПХГ (проектный объем активного газа — 410 млн м.).
Крупнейшее в мире хранилище в водоносном пласте — Касимовское ПХГ — было создано в 1977 г. (проектный объем активного газа — 12 млрд м.).
Подземные хранилища в соляных кавернах используются преимущественно для покрытия пиковых нагрузок, поскольку могут эксплуатироваться в «рывковом» режиме с производительностью отбора, на порядок превышающей производительность отбора из ПХГ в пористых структурах, а количество циклов может достигать до 20 в год. По этим
причинам созданию ПХГ в каменной соли уделяется большое внимание в развитых странах. Это также связано и с рыночными условиями функционирования системы газоснабжения, так как ПХГ в каменной соли могут служить для компенсации краткосрочных колебаний газопотребления, предотвращения штрафов за дисбаланс в поставках газа из-за аварий на газопроводах, а также планирования закупок на региональном уровне с
учетом ежемесячных или суточных колебаний цен на газ. В мире создано порядка 70 ПХГ в отложениях каменной соли с общей активной емкостью около 30 млрд м. Наибольшее количество ПХГ в соляных кавернах эксплуатируется в США — 31 ПХГ, общая активная емкость которых составляет порядка 8 млрд м., а суммарный объем отбора более 200 млн м./сут. В Германии эксплуатируется 19 ПХГ в соляных кавернах с
суммарным объемом активного газа около 7 млрд м., также планируется расширение действующих и строительство новых ПХГ с общей активной емкостью порядка 8 млрд м.. На территории России в настоящее
время строится 3 ПХГ в соляных кавернах: Калининградское (Калининградская область), Волгоградское (Волгоградская область) и Березняковское (Пермская область). В мире активно увеличивается спрос на резервные мощности ПХГ, однако не везде существуют оптимальные геологические условия для создания ПХГ на базе истощенных месторождений, в водоносных пластах или в каменной соли. В связи с этим разрабатываются и внедряются технологии создания ПХГ в каменных пещерах и угольных шахтах.
Примеры таких хранилищ единичны, но в каждом конкретном случае они являются технически единственно возможным и экономически обоснованным объектом для резервирования необходимого объема природного газа. Наибольший опыт в организации подобных хранилищ имеется у Норвегии, США, Швеции и Чехии, которые рассматривают этот вариант как более экономичную и доступную альтернативу организации
ПХГ в солях и наземных хранилищ сжиженного газа.
Подземные хранилища газа (ПХГ) являются неотъемлемой частью Единой системы газоснабжения России и расположены в основных районах потребления газа.
На территории Удмуртской Республики расположено Карашурское подземное хранилище газа. Фото Карашурского ПХГ показано на рис. 54.
Рис. 54. Карашурское подземное хранилище газа.
На территории Российской Федерации расположены 25 подземных хранилищ с суммарной активной емкостью 65,1 млрд м3.
На рис.55 показано расположение ПХГ на территории России
Рис. 55. Подземные хранилища газа на территории России
Расширение мощностей ПХГ - одна из стратегических задач «Газпрома». Затраты на создание мощностей подземного хранения газа для регулирования сезонной неравномерности в 5—7 раз ниже затрат на создание соответствующих резервных мощностей в добыче и транспорте газа.
Для повышения гибкости и обеспечения оптимальной загрузки системы «Газпром» расширяет мощности подземных хранилищ. В мае 2007 года после завершения реконструкции введена в эксплуатацию первая очередь Канчуринско-Мусинского комплекса подземного хранения газа в Республике Башкортостан.
На территории России ведется строительство трех объектов подземного хранения газа: в водоносной структуре - Удмуртского резервирующего комплекса, в каменной соли Калининградского и Волгоградского ПХГ. Волгоградское ПХГ будет крупнейшим в Европе и первым в России подземным хранилищем в солях с объемом активного газа 800 млн куб. м и суточной производительностью 70 млн куб. м.
«Газпром» использует также ПХГ в Австрии, Германии, Великобритании, Латвии, Украине, ведет строительство новых мощностей. В июле 2007 года введена в эксплуатацию первая очередь ПХГ «Хайдах» (Австрия) – совместного проекта «Газпрома», ВИНГАЗ и австрийской компании РАГ.
30 апреля 2008 г. ОАО «Газпром» и немецкая компания «Фербунднетц Газ» (ФауНГ) подписали Соглашение о сотрудничестве в области подземного хранения газа. В соответствии с документом стороны построят новое ПХГ близ г.Бернбург (Саксония-Ангальт, Германия). Ввод в эксплуатацию первой каверны хранилища запланирован на 2009 год, последней – на 2022 год. К моменту завершения строительства активный объем ПХГ составит 510 млн куб. м газа. В течение ближайших 14 лет «Газпром» и ФауНГ намерены совместно инвестировать в строительство ПХГ около 350 млн евро и создать в общей сложности десять дополнительных каверн на территории земли Саксония-Ангальт.
На рис.56 показаны ПХГ на территории Европейского континента.
Рис.56. Подземные хранилища газа на территории Европейского континента