
- •2. Интерференция света. Условия максимума и минимума интерференции. При каком соотношении между длиной когерентности и оптической разности хода возможно наблюдение интерференции света?
- •3. Дифракция света. Дифракция Френеля на круглом отверстии и на диске.
- •5. Дифракция на пространственной решетке. Понятие о рентгеновском спектральном анализе и о рентгеновском структурном анализе вещества.
- •9. Применение явления поляризации света в устройствах отображения информации на жидких кристаллах. ....
- •10. Дисперсия света-: Виды дисперсии света. Дисперсионные спектральные приборы. –
- •11. Основные постулаты сто (постулаты Эйнштейна). Преобразования Лоренца.
- •12. Следствия сто: относительность одновременности, релятивистские изменения интервала времени и интервала длины, релятивистский закон сложения скоростей.
- •13. Эффект Доплера. Красное и фиолетовое смещение спектральных линий.
- •14. Дайте определение светового потока и наименование световой и энергетической единиц измерения его в си.
- •23. Сформулируйте принцип Гюйгенса-Френеля. Поясните этот принцип на примере точеч-го источника света.
- •32. Кольца Ньютона и расчетная формула для радиусов темных колец Ньютона.
- •35. Запишите условие главных максимумов интенсивности света при дифракции на дифракционной решетке (формулу дифракционной решетки). Приведите график зависимости интенсивности света от угла дифракции.
- •37. Запишите выражение для интенсивности естественного света, пропущенного через поляризатор и анализатор без учета потерь света.
- •38. Запишите выражение для интенсивности естественного света, пропущенного через поляризатор и анализатор с учетом потерь света.
- •39. Запишите формулу, описываюгцую поглощение света веществом (закон Бугера-Ламберта-Бера).
- •40. Изобразите ход лучей при интерференции света от двух источников (опыт Юнга). Вычислите оптическую разность хода двух интерферирующих лучей. Какой вид будет иметь интерференционная картина?
- •42. Изобразите ход лучей при интерференции света в тонких пленках. Вычислите оптическую разность хода двух интерферирующих лучей. Какой вид будет иметь интерференционная картина?
- •44. Изобразите ход интерферирующих лучей при получении колец Ньютона. Вычислите оптическую разность хода двух интерферирующих лучей. Какой вид будет иметь интерференционная картина?
- •46. Изобразите ход лучей в интерферометре Жамена. Вычислите оптическую разность хода двух интерферирующих лучей. Какой вид будет иметь интерференционная картина?
- •47. Изобразите дифракционный спектр, который получается при дифракции белого света на дифракционной решетке. Назовите главное отличие дифракционного спектра от дисперсионного спектра.
- •48. Изобразите схему установки для получения плоской голограммы. Поясните ход лучей на этой схеме. Вопрос 6!
- •50. Изобразите ход отраженного и преломленного луча, если свет падает на диэлектрик под углом Брюстера. Какими свойствами обладают эти лучи?
- •5 2. Изобразите ход лучей белого свет через призму. Где это явление применяется?
- •56. На поляризатор падает плоскополяризованный свет с интенсивностью i0 . Какова интенсивность света за поляризатором?
- •60. Чем обусловлено двойное лучепреломление в оптически анизотропном одноосном кристалле?
- •70) Тепловое излучение и его закономерности. Формула Релея-Джинса и сущность «ультрафиолетовой катастрофы». Квантовая гипотеза Планка.
- •1. Максимальная начальная скорость фотоэлектронов определяется частотой света и не зависит от его интенсивности.
- •73) Давление света. Квантовое объяснение давления света. Формула для давления света.
- •74)Эффект Комптона.
- •75) Гипотеза Де Бройля.
- •77)Принцип неопределенности Гейзенберга. Какими соотношениями он выражается?
- •79)Принцип Паули. Распределение электронов в атоме по квантовым состояниям. Периодическая система элементов Менделеева и ее особенности.
- •80. Понятие об энергетических уровнях молекул. Спектры молекул. Люминисценция
- •81)Поглощение света, спонтанное и вынужденное излучения. Инверсия заселенности уровней. Типы лазеров и принцип их работы.
- •83) Ядерные реакции
- •86)Энергетической яркость тела и наименование единицы измерения в си Дайте определение этой единицы измерения.
- •88)Дайте определение коэффициента поглощения (поглощательной способности) тела. Какое тело называется: а) абсолютно черным телом; б) серым телом; в) зеркальным телом?
- •89)Дайте определение радиационной температуры нагретого тела. Как радиационная температура связана с истинной температурой нагретого тела?
- •90)Дайте определение яркостной температуры нагретого тела. Как яркостная температура связана с истинной температурой нагретого тела?
- •93)Активность радиоактивного препарата, наименование единицы измерения в си и внесистемной единицы измерения. Дайте определения этих единиц измерения
- •99 Что означает λmax в законе смещения Вина? Дайте определение этой физической величины
- •104)От чего зависит скорость вылета электронов, испускаемых металлом при фотоэффекте? (а) от частоты V падающего света; б) от интенсивности падающего света, в) от напряжения, поданного на фотоэлемен
- •105)От чего зависит задерживающая разность потенциала u, при фотоэффекте? (а) от частоты V падающего света, б) от интенсивности падающего света; в) от напряжения, поданного на фотоэлемент)
- •107)Исходя из гипотезы о квантах света, получите формулу для эффекта Комптона. Как выражается комптоновская длина волны электрона?
- •108)При каком явлении фотон, соударяясь с электроном, передает ему только часть энергии? (а) при фотоэффекте; б) при световом давлении; в) при эффекте Вавилова-Черенкова; г) при эффекте Комптона)
- •113)Изобразите на рисунке схему опытов Лебедева. Какая физическая величина измерялась в этих опытах?
- •114)Изобразите на рисунке схему опытов Комптона. Какая физическая величина измерялась в этих опытах?
- •116)Изобразите на рисунке энергетическую четырехуровневую схему, используемую в гелий-неоновом лазере. Объясните принцип работы гелий-неонового лазера.
- •117)Каким волновым уравнением описывается электрон в «потенциальной яме»?
- •118) Запишите формулу Планка для спектральной плотности энергии излучения атомов в-ва.
- •119) Как записывается реакция ά-распад
5. Дифракция на пространственной решетке. Понятие о рентгеновском спектральном анализе и о рентгеновском структурном анализе вещества.
Дифракционная
решётка (одномерная) представляет собой
систему параллельных щелей равной
ширины, лежащих в одной плоскости и
разделённых равными по ширине непрозрачными
промежутками. Дифракция, наблюдаемая
при прохождении света через такой
спектральный прибор, имеет большое
практическое значение. Величина d=a+b
называется периодом решётки или её
постоянной. Разность хода лучей от 2-х
соседних щелей будет
Дифракционная
картина на решётке определяется как
результат взаимной интерференции волн,
идущих от всех щелей. Поэтому в тех
направлениях, в которых ни одна из щелей
не распространяет свет, будут наблюдаться
главные минимумы, определяемые условием:
(m=1,2,3,….)
Выражение
(m=1,2,3,…..) задаёт условие главных
максимумов. Т.к.
,
то число главных максимумов будет
определяться выражением
К
тому же в направлениях, задаваемых
условием:
(m=1,2,3,…,N-1,N+1,…,2N-1,2N+1,…мы получим дополнительные минимумы. Для решётки из N щелей между 2-мя главными максимумами находится N-1 щелей, разделённых вторичными максимумами, создающими очень слабый фон. Т. о. чем больше щелей, тем больше образуется минимумов между главными максимумами, и тем более интенсивными и острыми будут сами максимумы.Основными характеристиками дифракционной решётки являются дисперсия и разрешающая сила.
Рентгеноспектральный анализ — инструментальный метод элементного анализа, основанный на изучении спектра рентгеновских лучей прошедших сквозь образец или испущенных им (рентгено-флуоресцентный анализ).В основном, применяется рентгенофлуоресцентный анализ. Он основан на том, что при возбуждении у атома удаляются электроны из внутренних оболочек. Электроны из внешних оболочек перескакивают на вакантные места, высвобождая избыточную энергию в виде кванта рентгеновского диапазона или передавая ее другому электорону из внешних оболочек (ожеэлек-трон). По энергиям и количеству испущенных квантов судят о количественном и качественном составе анализируемого вещества. В качестве источников возбуждения применяют рентгеновское излучение (первичное излучение) или электронный удар. Для анализа спектра вторичного излучения применяют либо дифракцию рентгеновских лучей на кристалле (волновая дисперсия), либо используют детекторы, чувствительные к энергии поглощенного кванта (энергетическая дисперсия). Рентгенострукту́рный ана́лиз (рентгенодифракционный анализ) — один из дифракционных методов исследования структуры вещества. В основе данного метода лежит явление
дифракции рентгеновских лучей на трехмерной кристаллической решетке. Явление дифракции рентгеновских лучей на кристаллах открыт Лауэ, теоретическое обоснование явлению дали Вульф и Брэгг (условие Вульфа-Брэгга). Как метод, рентгеноструктурный анализ разработан Дебаем и Шеррером. Метод позволяет определять атомную структуру вещества, включающую в себя пространственную группу элементарной ячейки, ее размеры и форму, а также определить группу симметрии кристалла. Рентгеноструктурный анализ и по сей день является самым распространенным методом определения структуры вещества в силу его простоты и относительной дешевизны.
6
.
Голография.
Основная
идея голографии. Плоские голограммы и
голограммы на толстослойных эмульсиях
(голограммы Денисюка).Голография
– это безлинзовое получение и последующее
восстановление оптического изображения
путём востановления волнового фронта.
Экспериментальное воплощение и дальнейшая
разработка этого способа стали возможным
после появления в 1960 г.источников света
высокой степени когерентности - лазеров.
Для регистрации предметной волны (волны,
идущей от предмета), используют ещё
когерентную с ней волну, идущую от
источника света (опорная волна). Идея
голографирования состоит в том, что
фотографируется распределение
интенсивности в интерференционной
картине, возникающей при суперпозиции
волнового поля объекта и когерентной
ему опорной волны известной фазы.
Последующая дифракция света на
зарегистрированном распределении
почернений в фотослое восстанавливает
волновое поле объекта и допускает
изучение этого поля при отсутствии
объекта. Схема получения
голограммы.(рис.а)
Лазерный пучок делится на две части, причём одна его часть отражается зеркалом на фотопластинку (опорная волна), а вторая попадает на фотопластинку, отразившись от предмета (предметная волна). Опорная и предметная волны накладываясь друг на друга, образуют на фотопластинке интерференционную картину. После проявления фотопластинки и получается голограмма - зарегистрированная на фотопластинке интерференционная картина, образованная при сложении опорной и предметной волн. Для восстановления изображения голограмма помещается в то же самое положение, где она находилась до регистрации. Её освещают опорным пучком того же лазера (вторая часть лазера прикрывается диафрагмой). В результате дифракции света на интерференционной структуре голограммы восстанавливается копия предметной волны, образующая объёмное мнимое изображение предмета, расположенное в том месте, где предмет находился при голографировании. Кроме того, восстанавливается ещё и действительное изображение, имеющее рельеф, обратный рельефу предмета, т.е. выпуклые места заменены вогнутыми, и наоборот (если наблюдение ведётся с права от голограммы). В 1962 г. русский физик Юрий Николаевич Денисюк предложил перспективный метод голографии с записью в трехмерной среде. В этой схеме луч лазера расширяется линзой и направляется зеркалом на фотопластинку. Часть луча, прошедшая через неё, освещает объект. Отраженный от объекта свет формирует объектную волну. Как видно, объектная и опорная волны падают на пластинку с разных сторон (т.н. схема на встречных пучках). В этой схеме записывается отражающая голограмма, которая самостоятельно вырезает из сплошного спектра узкий участок (участки) и отражает только его (т.о. выполняя роль светофильтра). Благодаря этому изображение голограммы видно в обычном белом свете солнца или лампы (см. иллюстрацию в начале статьи). Изначально голограмма вырезает ту длину волны, на которой её записывали (однако в процессе обработки и при хранении голограммы эмульсия может менять свою толщину, при этом меняется и длина волны), что позволяет записать на одну пластинку три голограммы одного объекта красным, зелёным и синим лазерами, получив в итоге одну цветную голограмму, которую практически невозможно отличить от самого объекта.Эта схема отличается предельной простотой и в случае применения полупроводникового лазера (имеющего крайне малые размеры и дающего расходящийся пучок без применения линз) сводится к одному лишь лазеру и некоторой основы, на которой закрепляется лазер, пластинка и объект. Именно такие схемы применяются при записи любительских голограмм.
7. Естественный
и поляризованный свет. Поляризация
света при отражении. Закон Брюстера.
Свет
представляет собой эл. магн. волну,
которая в свою очередь явл. совокупностью
двух волн. где E-вектор напряженности,
B- вектор магнитной индукции.
,
Поляризацией
называется выделение линейно-поляризованного
света из естественного или частично
поляриз. Для этой цели используют спец.
устройства- поляризаторы. Их действие
основано на поляризации света в результате
отраж. и преломления естеств. света.
Естественный удобно рассматривать, как
совокупность одинаковых по интенсивности
линейно поляриз.
волн двух типов s-
и p-волн. Из
,
,
видно, что для всех углов падения света
кроме i=0, коэффициент отражения s-волны
(Rs)>(Rp). Поэтому в отличии от падающ.
естеств. света, отраж. и преломл. свет
будет частично поляризован. Отражен.
свет полностью линейно поляриз. в
плоскости падения при угле падения
Брюстера
-закон
Брюстера. Степень поляризации можно
повысить, подвергая его ряду последователн.
отражений и преломлений
8. Двойное лучепреломление. Закон Малюса, Одноосные кристаллы. Понятие оптической оси кристалла и главного сечения кристалла.Один из способов получения линейно поляризованного света – явление двойного лучепреломления. Оно связано с анизотропией кристаллов, т.е. показатель преломления в кристалле зависит от направления колебаний вектора E световой волны:
- двуосные кристаллы;
- одноосные кристаллы;
В результате луч естественного света в кристалле разделяется на два луча: обыкновенный (о) и необыкновенный (е).
К
аждая
точка волнового фронта в кристалле
будет источником двух волн. В одноосном
кристалле существует одно направление,
вдоль которого эти две волны движутся
с одной скоростью. Это направление
называется оптической осью (МN).
В двуосном кристалле каждая точка является источником двух эллиптических волн и оба преломлённых луча ведут себя как необыкновеннные.
Ход лучей в двоякопреломляющей призме (Николя):
Для склейки двух кусков исландского шпата, из которого сделана призма, используется канадский бальзам т.к. ne<nк.б.<nо. Так как слой бальзама очень тонкий то необыкновенный луч практически не преломляется. Углы же призмы подобраны так чтобы обыкновенный луч на месте склейки испытывал полное внутреннее отражение.
Луч е называется необыкновенным, так как даже в случае нормального падения света на поверхность пластинки вырезанной из одноосного кристалла он преломляется.
Обыкновенная и необыкновенная волны линейно поляризованы. В обыкновенной волне вектор E направлен перпендикулярно главной плоскости кристалла ( плоскость, проходящая через луч и пересекающая оптическую ось кристалла) для обыкновенного луча. Электрический вектор Е необыкновенной волны лежит в главной плоскости кристалла для необыкновенного луча.
Закон Малюса.
Д
опустим,
что два поляризатора поставлены другь
за другом, так что их оси ОА1
и ОА2
образуют между сабой некоторый угол.
Первый поляризатор пропустит свет,
электрический вектор Е0
которого параллелен его оси ОА1.
Обозначим через I0
интенсивность этого света. Разложим Е0
на вектор Е//,
параллельный оси ОА2
второго поляроида,
и вектор
,
перпендикулярный к ней составляющая
будет задержана вторым поляризатором.
Через оба поляризатора пройдёт свет с
электрическим вектором
,
длина которого
.
Интенсивность света, прошедшего через
оба поляризатора,будет
.
Такое соотношение справедливо для
любого полиризатора и анализатора. Оно
называется законом Малюса.