
- •2. Интерференция света. Условия максимума и минимума интерференции. При каком соотношении между длиной когерентности и оптической разности хода возможно наблюдение интерференции света?
- •3. Дифракция света. Дифракция Френеля на круглом отверстии и на диске.
- •5. Дифракция на пространственной решетке. Понятие о рентгеновском спектральном анализе и о рентгеновском структурном анализе вещества.
- •9. Применение явления поляризации света в устройствах отображения информации на жидких кристаллах. ....
- •10. Дисперсия света-: Виды дисперсии света. Дисперсионные спектральные приборы. –
- •11. Основные постулаты сто (постулаты Эйнштейна). Преобразования Лоренца.
- •12. Следствия сто: относительность одновременности, релятивистские изменения интервала времени и интервала длины, релятивистский закон сложения скоростей.
- •13. Эффект Доплера. Красное и фиолетовое смещение спектральных линий.
- •14. Дайте определение светового потока и наименование световой и энергетической единиц измерения его в си.
- •23. Сформулируйте принцип Гюйгенса-Френеля. Поясните этот принцип на примере точеч-го источника света.
- •32. Кольца Ньютона и расчетная формула для радиусов темных колец Ньютона.
- •35. Запишите условие главных максимумов интенсивности света при дифракции на дифракционной решетке (формулу дифракционной решетки). Приведите график зависимости интенсивности света от угла дифракции.
- •37. Запишите выражение для интенсивности естественного света, пропущенного через поляризатор и анализатор без учета потерь света.
- •38. Запишите выражение для интенсивности естественного света, пропущенного через поляризатор и анализатор с учетом потерь света.
- •39. Запишите формулу, описываюгцую поглощение света веществом (закон Бугера-Ламберта-Бера).
- •40. Изобразите ход лучей при интерференции света от двух источников (опыт Юнга). Вычислите оптическую разность хода двух интерферирующих лучей. Какой вид будет иметь интерференционная картина?
- •42. Изобразите ход лучей при интерференции света в тонких пленках. Вычислите оптическую разность хода двух интерферирующих лучей. Какой вид будет иметь интерференционная картина?
- •44. Изобразите ход интерферирующих лучей при получении колец Ньютона. Вычислите оптическую разность хода двух интерферирующих лучей. Какой вид будет иметь интерференционная картина?
- •46. Изобразите ход лучей в интерферометре Жамена. Вычислите оптическую разность хода двух интерферирующих лучей. Какой вид будет иметь интерференционная картина?
- •47. Изобразите дифракционный спектр, который получается при дифракции белого света на дифракционной решетке. Назовите главное отличие дифракционного спектра от дисперсионного спектра.
- •48. Изобразите схему установки для получения плоской голограммы. Поясните ход лучей на этой схеме. Вопрос 6!
- •50. Изобразите ход отраженного и преломленного луча, если свет падает на диэлектрик под углом Брюстера. Какими свойствами обладают эти лучи?
- •5 2. Изобразите ход лучей белого свет через призму. Где это явление применяется?
- •56. На поляризатор падает плоскополяризованный свет с интенсивностью i0 . Какова интенсивность света за поляризатором?
- •60. Чем обусловлено двойное лучепреломление в оптически анизотропном одноосном кристалле?
- •70) Тепловое излучение и его закономерности. Формула Релея-Джинса и сущность «ультрафиолетовой катастрофы». Квантовая гипотеза Планка.
- •1. Максимальная начальная скорость фотоэлектронов определяется частотой света и не зависит от его интенсивности.
- •73) Давление света. Квантовое объяснение давления света. Формула для давления света.
- •74)Эффект Комптона.
- •75) Гипотеза Де Бройля.
- •77)Принцип неопределенности Гейзенберга. Какими соотношениями он выражается?
- •79)Принцип Паули. Распределение электронов в атоме по квантовым состояниям. Периодическая система элементов Менделеева и ее особенности.
- •80. Понятие об энергетических уровнях молекул. Спектры молекул. Люминисценция
- •81)Поглощение света, спонтанное и вынужденное излучения. Инверсия заселенности уровней. Типы лазеров и принцип их работы.
- •83) Ядерные реакции
- •86)Энергетической яркость тела и наименование единицы измерения в си Дайте определение этой единицы измерения.
- •88)Дайте определение коэффициента поглощения (поглощательной способности) тела. Какое тело называется: а) абсолютно черным телом; б) серым телом; в) зеркальным телом?
- •89)Дайте определение радиационной температуры нагретого тела. Как радиационная температура связана с истинной температурой нагретого тела?
- •90)Дайте определение яркостной температуры нагретого тела. Как яркостная температура связана с истинной температурой нагретого тела?
- •93)Активность радиоактивного препарата, наименование единицы измерения в си и внесистемной единицы измерения. Дайте определения этих единиц измерения
- •99 Что означает λmax в законе смещения Вина? Дайте определение этой физической величины
- •104)От чего зависит скорость вылета электронов, испускаемых металлом при фотоэффекте? (а) от частоты V падающего света; б) от интенсивности падающего света, в) от напряжения, поданного на фотоэлемен
- •105)От чего зависит задерживающая разность потенциала u, при фотоэффекте? (а) от частоты V падающего света, б) от интенсивности падающего света; в) от напряжения, поданного на фотоэлемент)
- •107)Исходя из гипотезы о квантах света, получите формулу для эффекта Комптона. Как выражается комптоновская длина волны электрона?
- •108)При каком явлении фотон, соударяясь с электроном, передает ему только часть энергии? (а) при фотоэффекте; б) при световом давлении; в) при эффекте Вавилова-Черенкова; г) при эффекте Комптона)
- •113)Изобразите на рисунке схему опытов Лебедева. Какая физическая величина измерялась в этих опытах?
- •114)Изобразите на рисунке схему опытов Комптона. Какая физическая величина измерялась в этих опытах?
- •116)Изобразите на рисунке энергетическую четырехуровневую схему, используемую в гелий-неоновом лазере. Объясните принцип работы гелий-неонового лазера.
- •117)Каким волновым уравнением описывается электрон в «потенциальной яме»?
- •118) Запишите формулу Планка для спектральной плотности энергии излучения атомов в-ва.
- •119) Как записывается реакция ά-распад
1. Законы отражения, преломления и полного внутреннего отражения света. Принцип Ферма. Закон отражения света: падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости (плоскость падения). Угол отражения γ равен углу падения α. Закон преломления света: падающий и преломленный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение синуса угла падения α к синусу угла преломления β есть величина, постоянная для двух данных сред. При переходе света из оптически более плотной среды в оптически менее плотную n2 < n1 (например, из стекла в воздух) можно наблюдать явление полного отражения, то есть исчезновение преломленного луча. Это явление наблюдается при углах падения, превышающих некоторый критический угол αпр, который называется предельным углом полного внутреннего отражения Для угла падения α = αпр sin β = 1 значениеsin αпр = n2 / n1 < 1 Принцип Ферма в геометрической оптике — постулат, предписывающий лучу света двигаться из начальной точки в конечную точку по пути, минимизирующему время движения (или, что то же самое, минимизирующему оптическую длину пути). Принцип Ферма представляет собой предельный случай принципа Гюйгенса-Френеля в волновой оптике для случая исчезающей малой длины волны света.
2. Интерференция света. Условия максимума и минимума интерференции. При каком соотношении между длиной когерентности и оптической разности хода возможно наблюдение интерференции света?
Интерференция света – это явление наложения волн от двух или нескольких когерентных источников, в результате которых происходит перераспределение энергии этих волн в пространстве. В области перекрытия волн колебания налагаются друг на друга, происходит сложение волн , в результате чего колебания в одних местах получаются более сильные , а в других- более слабые . В каждой точке среды результирующее колебание будет суммой всех колебаний, дошедших до данной точки. Результирующее колебание в каждой точке среды имеет постоянную во времени амплитуду , зависящую от расстояний точки среды от источников колебаний. Такого рода сложение колебаний называется интерференцией от когерентных источников.Условия максимума и минимума на разность фаз δ
УСЛОВИЕ НАБЛЮДЕНИЯ ЧЕТКОЙ ИНТЕРФЕРЕНЦИОННОЙ КАРТИНЫ: Если свет не монохроматический, а представляет собой некоторый спектр волн, то при данном угле падения условие max: ∆=ki λi (kλ1=(k+1)λ2=(k+2)λ3=…). Чтобы такое наблюдение оказалось возможным, необходимо, чтобы интервал длин волн был ограничен λЄ[λ; λ+∆λ]. k(λ+∆λ)=(k+1)λ;
∆λ=λ/2; Чем больше d, тем больше k, и тем теснее располагаются полосы. 1Å=10-10м – анстрем. ∆λ=100Å, λ=5000Å, k=50. Используя соотношение (1) получим n=1,5; d=8мкм, ∆λ=0,1Å, d>в 103. Интерференцию можно наблюдать в клинообразных тонких слоях при этом угол схождения поверхностей должен быть от нескольких секунд до минут.
3. Дифракция света. Дифракция Френеля на круглом отверстии и на диске.
Дифракция- это совокупность явлений наблюдающихся при распространении света в средах с резкими неоднородностями, причем размеры этих неоднородностей должны быть сравнимы с длиной волны.В зависимости от фронта волны существует два вида дифракции: 1. Фраунгофера - она наблюдается на плоских поверхностях и удаленных источниках .2. Френеля - на сферических поверхностях.
Дифракция Френеля на круглом отверстии.
Дифракционная картина наблюдается на экране Э. Экран параллелен плоскости отверстия L.
т.е.
.
Если m- нечетное,
то в М наблюдается максимум; если m-четное
– минимум. При неизменном положении
источника света , число зон зависит от
диаметра отверстия и расстояния L.
Следовательно при изменении диаметра
или L результат в т.М должен изменится.
Если
,
то никакой интерференционной картины
наблюдаться на экране не будет, в этом
случае свет распространяется как и в
отсутствие непрозрачного экрана с
отверстием, т.е. прямолинейно. Дифракция
Френеля на небольшом диске.
нтерференционная картина на экране
имеет вид концентрических темных и
светлых пятен с центром в т.О, где всегда
находится интерференционный минимум
(пятно Пуассона).
А- амплитуда света в т.О. При освещении
диска белым светом в центре экрана
наблюдается белое пятно, окруженное
системой концентрических цветных колец.
По мере увеличения отношения диаметра
диска d к расстоянию L от диска до экрана
яркость пятна Пуассона постепенно
уменьшается, а следующее за ним темное
пятно расширяется, образуя область тени
за диском.
4. Дифракция
Фраунгофера на одной щели и на дифракционной
решетке. Дифракция
Фраунгофера —
случай дифракции,
при котором дифракционная картина
наблюдается на значительном расстоянии
от отверстия или преграды. Расстояние
должно быть таким, что бы можно было
пренебречь в выражении для разности
фаз членами порядка,
что
сильно упрощает теоретическое рассмотрение
явления. Пусть отверстие в экране
представляет собой длинную щель шириной, на которую падает плоская волна .
Согласно
принципу Гюйгенса-Френеля волновую
п верхность падающей волны в плоскости
щели следует разбить на стольна
столь малые участки, чтобы колебания
в точке наблюдались P, вызываемые
вторичными волнами от всех точек
одного участка, имели бы почти одинаковую
фазу. Для нахождения результирующей
амплитуды колебаний в любой точке экрана
необходимо знать распределение фаз
всех колебаний, приходящих в эту точку.
Так как линза не вносит дополнительной
разности хода, то распределение фаз
в точке Pϕбудет
таким же, как и в плоскости AB , образующий
с плоскостью щели угол ϕ.
Сумма когерентных возмущений от всех
участков этой поверхности равна: