
- •1. Концепции современного естествознания как предмет о современной естественно-научной картине мира. Актуальность предмета.
- •2. Научное мировоззрение и его значение в современном мире, специфические черты науки и отличия от других видов деятельности человека.
- •3. Современные представления о становлении науки.
- •4. Понятие метода и методологии. Классификация методов научного познания
- •5. Общенаучные методы эмпирического познания. Наблюдение. Научное наблюдение. Прямое и косвенное наблюдения.
- •6. Общенаучные методы эмпирического познания. Эксперимент. Исследовательские, проверочные, качественные и количественные эксперименты.
- •7. Измерение. Единицы измерения. Основные и произвольные единицы измерения. Естественные системы единиц. Международная система единиц (си). Прямые, косвенные, статические и динамические измерения
- •8. Общенаучные методы теоретического познания. Общенаучные методы, применяемые на эмпирическом и теоретическом уровнях. Анализ и синтез.
- •9. Наука как процесс познания. Структура научного знания. Особенности научного знания. Границы научного метода.
- •10. Материя, пространство и время. Их основные особенности.
- •11. Научные революции
- •12. Глобальный эволюционизм.
- •13. Синергетика - теория самоорганизации.
- •14. Общие контуры современной естественнонаучной картины мира.
- •15. Общая характеристика структурных уровней организации материи: микро-, макро- и мега-миры.
- •16. Модель расширяющейся Вселенной. Теория большого взрыва.
- •17. Волновые и корпускулярные свойства микрообъектов. Теория атома н. Бора
- •18. Элементарные частицы.
- •19. Типы фундаментальных взаимодействий в физике.
- •20. Эволюция химических знаний.
- •21. Развитие учения о составе вещества. Синтез новых материалов.
- •22. Развитие структурной химии
- •23. Строение и происхождение Земли.
- •24. Генная инженерия. Проблемы клонирования
- •25. Сущность живого, его основные признаки
- •26. Структурные уровни организации живого
- •27. Основные теории возникновения жизни
- •28. Развитие эволюционной теории. Эволюционные представления древности. Теория эволюции Ламарка.
- •29. Эволюционная теория Дарвина-Уоллеса.
- •30. Синтетическая теория эволюции (неодарвинизм).
- •31. Микроэволюция. Макроэволюция. Популяция с точки зрения эволюции.
- •32. Естественный и искусственный отбор. Виды борьбы за существование
- •33. Основные понятия экологии. Экосистема. Популяция. Биосфера
- •34. Биоэтика и поведение человека.
- •35. Концепции коэволюции и биосферы.
- •36. Глобальные экологические проблемы. Воздействие человека на биосферу.
7. Измерение. Единицы измерения. Основные и произвольные единицы измерения. Естественные системы единиц. Международная система единиц (си). Прямые, косвенные, статические и динамические измерения
Большинство научных экспериментов и наблюдений включает в себя проведение разнообразных измерений. Измерение -- это процесс, заключающийся в определении количественных значений тех или иных свойств, сторон изучаемого объекта, явления с помощью специальных технических устройств. Результат измерения получается в виде некоторого числа единиц измерения. Единица измерения -- это эталон, с которым сравнивается измеряемая сторона объекта или явления (эталону присваивается числовое значение «1»). Существует множество единиц измерения, соответствующее множеству объектов, явлений, их свойств, сторон, связей, которые приходится измерять в процессе научного познания. При этом единицы измерения подразделяются на основные, выбираемые в качестве базисных при построении системы единиц, и производные, выводимые из других единиц с помощью каких-то математических соотношений. Методика построения системы единиц как совокупности основных и производных была впервые предложена в 1832 году К. Гауссом. Он построил систему единиц, в которой за основу были приняты три произвольные, независимые друг от друга основные единицы -- длины (миллиметр), массы (миллиграмм) и времени (секунда). Все остальные (производные) единицы можно было определить с помощью этих трех. В дальнейшем с развитием науки и техники появились и другие системы единиц физических величин, построенных по принципу, предложенному Гауссом. Они базировались на метрической системе мер, но отличались друг от друга основными единицами.
Кроме того, в физике появились так называемые естественные системы единиц. Их основные единицы определялись из законов природы (это исключало произвол человека при построении указанных систем). Примером может служить «естественная» система физических единиц, предложенная в свое время Максом Планком. В ее основу были положены «мировые постоянные: скорость света в пустоте, постоянная тяготения, постоянная Больцмана и постоянная Планка. Исходя из них и приравняв их к «I», Планк получил ряд производных единиц (длины, массы, времени и температуры). Планк так писал по поводу единиц предложенной им системы: «Эти величины сохраняют свое естественное значение, пока законы всемирного тяготения и распространения света в пустоте и два основных начала термодинамики останутся неизменным; они должны получаться одинаковыми, какими бы разумными существами и какими бы методами они ни определялись».
Основное значение подобных «естественных» систем единиц (к ним относятся также система атомных единиц Хартри и некоторые другие) состоит в существенном упрощении вида отдельных уравнений физики. Однако размеры единиц таких систем делают их малоудобными для практики. Кроме того, точность измерения основных единиц подобных систем, необходимая для установления всех производных единиц, еще далеко не достаточна. В силу указанных причин предложенные до сих пор «естественные» системы единиц не могут в настоящее время найти применения при решении вопроса об унификации единиц измерения. В настоящее время в естествознании действует преимущественно Международная система единиц (СИ), принятая в 1960 году XI Генеральной конференцией по мерам и весам. Международная система единиц построена на базе семи основных (метр, килограмм, секунда, ампер, кельвин, кандела, моль) и двух дополнительных (радиан, стерадиан) единиц. С помощью специальной таблицы множителей и приставок можно образовывать кратные и дольные единицы (например, с помощью множителя 103 и приставки «милли» к наименованию любой из названных выше единиц измерения можно образовывать дольную единицу размером в одну тысячную от исходной).
Международная система единиц физических величин является наиболее совершенной и универсальной из всех существовавших до настоящего времени. Она охватывает физические величины механики, термодинамики, электродинамики и оптики, которые связаны между собой физическими законами. Существует несколько видов измерений. Исходя из характера зависимости измеряемой величины от времени, измерения разделяют на статические и динамические. При статических измерениях величина, которую мы измеряем, остается постоянной во времени (измерение размеров тел, постоянного давления и т. п.). К динамическим относятся такие измерения, в процессе которых измеряемая величина меняется во времени (измерение вибраций, пульсирующих давлений и т. п.).
По способу получения результатов различают измерения прямые и косвенные. В прямых измерениях искомое значение измеряемой величины получается путем непосредственного сравнения ее с эталоном или выдается измерительным прибором. При косвенном измерении искомую величину определяют на основании известной математической зависимости между этой величиной и другими величинами, получаемыми путем прямых измерений (например, нахождение удельного электрического сопротивления проводника по его сопротивлению, длине и площади поперечного сечения). Косвенные измерения широко используются в тех случаях, когда искомую величину невозможно или слишком сложно измерить непосредственно или когда прямое измерение дает менее точный результат.
________________