
- •1. Концепции современного естествознания как предмет о современной естественно-научной картине мира. Актуальность предмета.
- •2. Научное мировоззрение и его значение в современном мире, специфические черты науки и отличия от других видов деятельности человека.
- •3. Современные представления о становлении науки.
- •4. Понятие метода и методологии. Классификация методов научного познания
- •5. Общенаучные методы эмпирического познания. Наблюдение. Научное наблюдение. Прямое и косвенное наблюдения.
- •6. Общенаучные методы эмпирического познания. Эксперимент. Исследовательские, проверочные, качественные и количественные эксперименты.
- •7. Измерение. Единицы измерения. Основные и произвольные единицы измерения. Естественные системы единиц. Международная система единиц (си). Прямые, косвенные, статические и динамические измерения
- •8. Общенаучные методы теоретического познания. Общенаучные методы, применяемые на эмпирическом и теоретическом уровнях. Анализ и синтез.
- •9. Наука как процесс познания. Структура научного знания. Особенности научного знания. Границы научного метода.
- •10. Материя, пространство и время. Их основные особенности.
- •11. Научные революции
- •12. Глобальный эволюционизм.
- •13. Синергетика - теория самоорганизации.
- •14. Общие контуры современной естественнонаучной картины мира.
- •15. Общая характеристика структурных уровней организации материи: микро-, макро- и мега-миры.
- •16. Модель расширяющейся Вселенной. Теория большого взрыва.
- •17. Волновые и корпускулярные свойства микрообъектов. Теория атома н. Бора
- •18. Элементарные частицы.
- •19. Типы фундаментальных взаимодействий в физике.
- •20. Эволюция химических знаний.
- •21. Развитие учения о составе вещества. Синтез новых материалов.
- •22. Развитие структурной химии
- •23. Строение и происхождение Земли.
- •24. Генная инженерия. Проблемы клонирования
- •25. Сущность живого, его основные признаки
- •26. Структурные уровни организации живого
- •27. Основные теории возникновения жизни
- •28. Развитие эволюционной теории. Эволюционные представления древности. Теория эволюции Ламарка.
- •29. Эволюционная теория Дарвина-Уоллеса.
- •30. Синтетическая теория эволюции (неодарвинизм).
- •31. Микроэволюция. Макроэволюция. Популяция с точки зрения эволюции.
- •32. Естественный и искусственный отбор. Виды борьбы за существование
- •33. Основные понятия экологии. Экосистема. Популяция. Биосфера
- •34. Биоэтика и поведение человека.
- •35. Концепции коэволюции и биосферы.
- •36. Глобальные экологические проблемы. Воздействие человека на биосферу.
18. Элементарные частицы.
Элементарная частица — собирательный термин, относящийся к микрообъектам в субъядерном масштабе, которые невозможно расщепить на составные части.
Следует иметь в виду, что некоторые элементарные частицы (электрон, фотон, кварки и т. д.) на данный момент считаются бесструктурными и рассматриваются как первичныефундаментальные частицы. Другие элементарные частицы (так называемые составные частицы — протон, нейтрон и т. д.) имеют сложную внутреннюю структуру, но, тем не менее, по современным представлениям, разделить их на части невозможно.
Строение и поведение элементарных частиц изучается физикой элементарных частиц.
Элементарные частицы, в узком смысле - частицы, которые нельзя считать состоящими из других частиц. В современной физике термин "элементарные частицы" используют в более широком смысле: так называют мельчайшие частицы материи, подчиненные условию, что они не являются атомными ядрами и атомами (исключение составляет протон); иногда по этой причине элементарные частицы называют субъядерными частицами. Большая часть таких частиц (а их известно более 350) являются составными системами.
Элементарные частицы участвуют в электромагнитном, слабом, сильном и гравитационном взаимодействиях. Из-за малых масс элементарных частиц их гравитационное взаимодействие обычно не учитывается. Все элементарные частицы разделяют на три основные группы. Первую составляют так называемые бозоны - переносчики электрослабого взаимодействия. Сюда относится фотон, или квант электромагнитного излучения. Масса покоя фотона равна нулю, поэтому скорость распространения электромагнитных волн в вакууме (в т. ч. световых волн) представляет собой предельную скорость распространения физического воздействия и является одной из фундаментальных физических постоянных; принято, что с = (299792458±1,2) м/с.
Вторая группа элементарных частиц - лептоны, участвующие в электромагнитных и слабых взаимодействиях. Известно 6 лептонов: электрон, электронное нейтрино, мюон, мюонное нейтрино, тяжелый τ-лептон и соответствующее нейтрино. Электрон (символ e) считается материальным носителем наименьшей массы в природе me, равной 9,1×10-28 г (в энергетических единицах ≈0,511 МэВ) и наименьшего отрицательного электрического заряда e = 1,6×10-19 Кл. Мюоны (символ μ-) - частицы с массой около 207 масс электрона (105,7 МэВ) и электрическим зарядом, равным заряду электрона; тяжелый τ-лептон имеет массу около 1,8 ГэВ. Соответствующие этим частицам три типа нейтрино - электронное (символ νe), мюонное (символ νμ) и τ-нейтрино (символ ντ) - легкие (возможно, безмассовые) электрически нейтральные частицы.
Все лептоны имеют спин ½ћ (ћ - постоянная Планка), т.е. по статистическим свойствам являются фермионами
Каждому из лептонов соответствует античастица, имеющая те же значения массы, спина и других характеристик, но отличающаяся знаком электрического заряда. Существуют позитрон (символ e+) - античастица по отношению к электрону, положительно заряженный мюон (символ μ+) и три типа антинейтрино (символы ), которым приписывают противоположный знак особого квантового числа, называемого лептонным зарядом (см. ниже).
Третья группа элементарных частиц - адроны, они участвуют в сильном, слабом и электромагнитном взаимодействиях. Адроны представляют собой "тяжелые" частицы с массой, значительно превышающей массу электрона. Это наиболее многочисленная группа элементарных частиц. Адроны делятся на барионы - частицы со спином ½ћ, мезоны - частицы с целочисленным спином (0 или 1); а также так называемые резонансы - короткоживущие возбужденные состояния адронов. К барионам относят протон (символ p) - ядро атома водорода с массой, в ~ 1836 раз превышающейme и равной 1,672648×10-24 г (≈938,3 МэВ), и положительным электрическим зарядом, равным заряду нейтрон(символ n) - электрически нейтральная частица, масса которой немного превышает массу протона. Из протонов и нейтронов построены все атомные ядра, именно сильное взаимодействие обусловливает связь этих частиц между собой. В сильном взаимодействии протон и нейтрон имеют одинаковые свойства и рассматриваются как два квантовых состояния одной частицы - нуклона с изотопическим спином ½ћ (см. ниже). Барионы включают и гипероны -элементарные частицы с массой больше нуклонной: Λ-гиперон имеет массу 1116 МэВ, Σ-гиперон - 1190 МэВ, Θ-гиперон - 1320 МэВ, Ω-гиперон - 1670 МэВ. Мезоны имеют массы, промежуточные между массами протона и электрона (π-мезон, K-мезон). Существуют мезоны нейтральные и заряженные (с положительным и отрицательным элементарным электрическим зарядом). Все мезоны по своим статистическим свойствам относятся к бозонам.
ОСНОВНЫЕ СВОЙСТВА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ
Каждая элементарная частица описывается набором дискретных значений физических величин (квантовых чисел). Общие характеристики всех элементарных частиц - масса, время жизни, спин, электрический заряд.
В зависимости от времени жизни элементарные частицы делятся на стабильные, квазистабильные и нестабильные (резонансы). Стабильными (в пределах точности современных измерений) являются: электрон (время жизни более 5×1021 лет), протон (более 1031 лет), фотон и нейтрино. К квазистабильным относятся частицы, распадающиеся вследствие электромагнитного и слабого взаимодействий, их времена жизни более 10-20 с. Резонансы распадаются за счет сильного взаимодействия, их характерные времена жизни 10-22 – 10-24 с.
Внутренними характеристиками (квантовыми числами) элементарных частиц являются лептонный (символ L) и барионный (символ В)заряды; эти числа считаются строго сохраняющимися величинами для всех типов фундаментальных взаимодействий. Для лептонных нейтрино и их античастиц L имеют противоположные знаки; для барионов В = 1, для соответствующих античастиц В=-1.
Для адронов характерно наличие особых квантовых чисел: "странности", "очарования", "красоты". Обычные (нестранные) адроны - протон, нейтрон, π-мезоны. Внутри разных групп адронов имеются семейства частиц, близких по массе и со сходными свойствами по отношению к сильному взаимодействию, но с различными значениями электрического заряда; простейший пример – протон и нейтрон. Общее квантовое число для таких элементарных частиц – так называемый изотопический спин, принимающий, как и обычный спин, целые и полуцелые значения. К особым характеристикам адронов относится и внутренняя четность, принимающая значения ±1.
Важное свойство элементарных частиц – их способность к взаимопревращениям в результате электромагнитных или других взаимодействий. Один из видов взаимопревращений - так называемое рождение пары, или образование одновременно частицы и античастицы (в общем случае - образование пары элементарныех частиц с противоположными лептонными или барионными зарядами). Возможны процессы рождения электрон-позитронных пар e-e+, мюонных пар μ+μ- новых тяжелых частиц при столкновениях лептонов, образование из кварков cc- и bb-состояний (см. ниже). Другой вид взаимопревращений элементарных частиц - аннигиляция пары при столкновениях частиц с образованием конечного числа фотонов (γ-квантов). Обычно образуются 2 фотона при нулевом суммарном спине сталкивающихся частиц и 3 фотона - при суммарном спине, равном 1 (проявление закона сохранения зарядовой четности).
При определенных условиях, в частности при невысокой скорости сталкивающихся частиц, возможно образование связанной системы - позитрония e-e+ и мюония μ+e-. Эти нестабильные системы, часто называемые водородоподобными атомами. Их время жизни в веществе в большой степени зависит от свойств вещества, что позволяет использовать водородоподобные атомы для изучения структуры конденсированного вещества и кинетики быстрых химических реакций (см. Мезонная химия, Ядерная химия).
КВАРКОВАЯ МОДЕЛЬ АДРОНОВ
Детальное рассмотрение квантовых чисел адронов с целью их классификации позволило сделать вывод о том, что странные адроны и обычные адроны в совокупности образуют объединения частиц с близкими свойствами, названные унитарными мультиплетами. Числа входящих в них частиц равны 8 (октет) и 10 (декуплет). Частицы, входящие в состав унитарного мультиплета, имеют одинаковые спин и внутреннюю четность, но различаются значениями электрического заряда (частицы изотопического мультиплета) и странности. С унитарными группами связаны свойства симметрии, их обнаружение явилось основой для вывода о существовании особых структурных единиц, из которых построены адроны, – кварков. Считают, что адроны представляют собой комбинации 3 фундаментальных частиц со спином ½: n-кварков,d-кварков и s-кварков. Так, мезоны составлены из кварка и антикварка, барионы – из 3 кварков.
Допущение, что адроны составлены из 3 кварков, было сделано в 1964 (Дж.Цвейг и независимо от него М.Гелл-Ман). В дальнейшем в модель строения адронов (в частности, для того чтобы не возникало противоречия с принципом Паули) были включены еще 2 кварка - "очарованный" (с) и "красивый" (b), а также введены особые характеристики кварков - "аромат" и "цвет". Кварки, выступающие как составные части адронов, в свободном состоянии не наблюдались. Все многообразие адронов обусловлено различными сочетаниями n-, d-, s-, с- и b-кварков, образующих связные состояния. Обычным адронам (протону, нейтрону, π-мезонам) соответствуют связные состояния, построенные из n- и d-кварков. Наличие в адроне наряду с n- и d-кварками одного s-, с- или b-кварка означает, что соответствующий адрон - "странный", "очарованный" или "красивый".
Кварковая модель строения адронов подтвердилась в результате экспериментов, проведенных в конце 60-х – начале 70-х гг. XX в. Кварки фактически стали рассматриваться как новые элементарные частицы – истинно элементарные частицы для адронной формы материи. Ненаблюдаемость свободных кварков, по-видимому, носит принципиальный характер и дает основания предполагать, что они являются теми элементарными частицами, которые замыкают цепь структурных составляющих вещества. Существуют теоретические и экспериментальные доводы в пользу того, что силы, действующие между кварками, не ослабевают с расстоянием, т.е. для отделения кварков друг от друга требуется бесконечно большая энергия или, иначе говоря, возникновение кварков в свободном состоянии невозможно. Это делает их совершенно новым типом структурных единиц вещества. Возможно, что кварки выступают как последняя ступень дробления материи.
________________