
- •1. Концепции современного естествознания как предмет о современной естественно-научной картине мира. Актуальность предмета.
- •2. Научное мировоззрение и его значение в современном мире, специфические черты науки и отличия от других видов деятельности человека.
- •3. Современные представления о становлении науки.
- •4. Понятие метода и методологии. Классификация методов научного познания
- •5. Общенаучные методы эмпирического познания. Наблюдение. Научное наблюдение. Прямое и косвенное наблюдения.
- •6. Общенаучные методы эмпирического познания. Эксперимент. Исследовательские, проверочные, качественные и количественные эксперименты.
- •7. Измерение. Единицы измерения. Основные и произвольные единицы измерения. Естественные системы единиц. Международная система единиц (си). Прямые, косвенные, статические и динамические измерения
- •8. Общенаучные методы теоретического познания. Общенаучные методы, применяемые на эмпирическом и теоретическом уровнях. Анализ и синтез.
- •9. Наука как процесс познания. Структура научного знания. Особенности научного знания. Границы научного метода.
- •10. Материя, пространство и время. Их основные особенности.
- •11. Научные революции
- •12. Глобальный эволюционизм.
- •13. Синергетика - теория самоорганизации.
- •14. Общие контуры современной естественнонаучной картины мира.
- •15. Общая характеристика структурных уровней организации материи: микро-, макро- и мега-миры.
- •16. Модель расширяющейся Вселенной. Теория большого взрыва.
- •17. Волновые и корпускулярные свойства микрообъектов. Теория атома н. Бора
- •18. Элементарные частицы.
- •19. Типы фундаментальных взаимодействий в физике.
- •20. Эволюция химических знаний.
- •21. Развитие учения о составе вещества. Синтез новых материалов.
- •22. Развитие структурной химии
- •23. Строение и происхождение Земли.
- •24. Генная инженерия. Проблемы клонирования
- •25. Сущность живого, его основные признаки
- •26. Структурные уровни организации живого
- •27. Основные теории возникновения жизни
- •28. Развитие эволюционной теории. Эволюционные представления древности. Теория эволюции Ламарка.
- •29. Эволюционная теория Дарвина-Уоллеса.
- •30. Синтетическая теория эволюции (неодарвинизм).
- •31. Микроэволюция. Макроэволюция. Популяция с точки зрения эволюции.
- •32. Естественный и искусственный отбор. Виды борьбы за существование
- •33. Основные понятия экологии. Экосистема. Популяция. Биосфера
- •34. Биоэтика и поведение человека.
- •35. Концепции коэволюции и биосферы.
- •36. Глобальные экологические проблемы. Воздействие человека на биосферу.
16. Модель расширяющейся Вселенной. Теория большого взрыва.
Модель Вселенной Эйнштейна стала первой космологической моделью, базирующейся на выводах общей теории относительности. Это связано с тем, что именно тяготение определяет взаимодействие масс на больших расстояниях. Поэтому теоретическим ядром современной космологии выступает теория тяготения – общая теория относительности.
Пять лет спустя, в 1922 г. советский физик и математик Александр Фридман на основании строгих расчетов показал, что Вселенная Эйнштейна никак не может быть стационарной, неизменной. Фридман сделал это, опираясь на сформулированный им космологический принцип. Он строится на двух предположениях: об изотропности и однородности Вселенной. Изотропность Вселенной понимается как отсутствие выделенных направлений, одинаковость Вселенной по всем направлениям. Однородность Вселенной понимается как одинаковость всех точек Вселенной, проводя наблюдения из которых, мы везде увидим изотропную Вселенную.
Сегодня с этим принципом согласно большинство ученых. Результаты современных наблюдений показывают, что структурные элементы далеких звезд и галактик, физические законы, которым они подчиняются, физические константы одинаковы во всей наблюдаемой части Вселенной, включая Землю. Кроме того, известно, что вещество во Вселенной собрано в «сгустки» – звезды, звездные системы и галактики. Но распределение вещества в более крупных масштабах однородно.
Фридман на основе космологического принципа доказал, что уравнения Эйнштейна имеют и другие, нестационарные решения, согласно которым Вселенная может либо расширяться, либо сжиматься. При этом речь шла о расширении самого пространства, т.е. об увеличении всех расстояний мира. Вселенная Фридмана напоминала раздувающийся мыльный пузырь, у которого и радиус, и площадь поверхности непрерывно увеличиваются.
Доказательства в пользу модели расширяющейся Вселенной были получены в 1929 г., когда американский астроном Эдвин Хаббл открыл при исследовании спектров далеких галактик красное смещение спектральных линий (смещение линий к красному концу спектра). Это было истолковано как следствие эффекта Допплера – изменение частоты колебаний или длины волн из-за движения источника волн и наблюдателя по отношению друг к другу. Красное смещение было объяснено как следствие удаления галактик друг от друга со скоростью, возрастающей с расстоянием. По последним измерениям, это увеличение скорости расширения составляет примерно 55 км/с на каждый миллион парсек. После этого открытия вывод Фридмана о нестационарности Вселенной получил подтверждение, и в космологии утвердилась модель расширяющейся Вселенной.
Наблюдаемое нами разбегание галактик есть следствие расширения пространства замкнутой конечной Вселенной. При таком расширении пространства все расстояния во Вселенной увеличиваются подобно тому, как растут расстояния между пылинками на поверхности раздувающегося мыльного пузыря. Каждую из таких пылинок, как и каждую из галактик, можно с полным правом считать центром расширения.
Возникновение Вселенной. Теория Большого Взрыва
Проблема эволюции Вселенной является центральной в естествознании. Вопросы о том, как велик окружающий нас звездный мир и когда он возник или был создан, интересуют людей с незапамятных времен. В различных мифах, натурфилософских представлениях до нас дошли идеи о бесконечном пространстве и времени. Действительно, утверждения о том, что мир возник из какого-то первичного хаоса или был сотворен в некоторый момент времени, неявно предполагают, что Хаос и Творец существовали еще «до того», а за границами мира, как бы далеко они ни располагались, всегда есть что-то еще, по крайней мере пустота. Принципиально иная концепция возникла в 20-х годах 20-го века. Основываясь на созданной незадолго до того общей теории относительности, ленинградский физик А.А. Фридман пришел к выводу, что в силу каких-то пока не ясных причин Вселенная внезапно возникла в очень малом, практически точечном объеме чудовищной плотности и температуры (так называемой сингулярности) и стала стремительно расширяться. Размеры «зародыша» Вселенной сопоставляют с размерами атомного ядра, т.е. 10-15 м.Ученик Фридмана Дж. Гамов рассчитал в конце сороковых годов модель горячей взрывающейся Вселенной, положив начало так называемой теории "Большого взрыва". Широкое распростра-нение и внедрение эта теория получила с середины 1960-х годов.
Большой взрыв – понятие из теории происхождения Вселенной, согласно которому Вселенная образовалась в результате грандиозного взрыва чего-то невероятно маленького и горячего и с тех пор все время расширяется.
Спрашивать о том, что было до «Большого Взрыва» и что находится за пределами стреми-тельно расширяющегося мира, бессмысленно. Вселенная, согласно теории Большого Взрыва ограничена в пространстве и времени, по крайней мере, со стороны прошлого. Такая трудно совместимая с нашей интуитивной логикой картина следовала из полученных Фридманом формул. Вскоре, однако, астрономические наблюдения подтвердили факт расширения окружаю-щего нас пространства: американский астроном Э. Хаббл измерил его скорость. Экстраполируя обратно к исходному нулевому объему, можно было оценить время жизни Вселенной — что-то около 15–20 миллиардов лет. До самого взрыва не существовало ни вещества, ни времени, ни пространства. События в первую секунду протекали стремительно. Вначале образовалось излучение (фотоны), затем частицы вещества - кварки и антикварки. В течение той же секунды из кварков и антикварков образовались протоны, антипротоны и нейтроны. Как известно, антипротон отличается от протона противоположным зарядом, а в остальном, эти частицы являются почти тождественными. При столкновении протона и антипротона происходит реакция аннигиляции, в ходе которых обе частицы исчезают, превращаясь в излучение (фотоны). Также возможны ядерные реакции обратные реакции аннигиляции, когда из фотонов образуется пара протон-антипротон. Сказанное о протоне и антипротоне верно также и для любой другой пары частицы и соответствующей античастицы.
После образования протонов, антипротонов и нейтронов стали частыми реакции аннигиляции, так как вещество новорожденной Вселенной было очень плотно, частицы постоянно между собою сталкивались.
К исходу первой секунды, когда температура Вселенной упала до 10 млрд градусов, образо-вались и некоторые другие элементарные частицы, в том числе электрон и парная ему античастица - позитрон. К тому же временному рубежу большая часть частиц аннигилировала.
Аннигиляция – превращение частицы и античастицы при столкновении в другие частицы.
Так вышло, что частиц вещества было на ничтожную долю процента больше, чем частиц антивещества. Этот факт до сих пор нуждается в объяснении. Но, так или иначе, наша Вселенная состоит из вещества, а не из антивещества.
К третьей минуте из четверти всех протонов и нейтронов образовались ядра гелия. Через несколько сот тысяч лет расширяющаяся Вселенная остыла настолько, что ядра гелия и протоны смогли удерживать возле себя электроны. Так образовались атомы гелия и водорода. Вселенная стала намного «просторнее». Излучение, не сдерживаемое больше свободными электронами, смогло распространяться на значительные расстояния. Мы до сих пор можем на Земле "слышать" отголоски того излучения, предсказанного Г. Гамовым. Оно равномерно приходит со всех сторон и, значительно "остыв" за 15 миллиардов лет с момента Взрыва, соответствует излучению тела, нагретого всего до 3 К. Это излучение принято называть реликтовым. Его обнаружение и существование подтверждают теорию Большого взрыва. Излучение является микроволновым.
При расширении в общем однородной Вселенной в тех или иных ее местах образовывались случайные сгущения. Но именно эти "случайности" стали зачатками больших уплотнений и центрами концентрации вещества. Так во Вселенной образовались области, где вещество собиралось, и области, где его почти не было. Под воздействием гравитации появившиеся уплотнения росли. В местах таких уплотнений стали образовываться галактики, скопления и сверхскопления галактик.
В последнюю четверть двадцатого века теория Большого Взрыва стала практически общепринятой в космологии.
________________