
- •1.3. Параметры цифровых интегральных микросхем
- •Параметры цифровых микросхем
- •Уровни логического нуля и единицы
- •Входные и выходные токи цифровых микросхем
- •Параметры, определяющие быстродействие цифровых микросхем
- •Описание логической функции цифровых схем
- •2.1. Основы схемотехники элементов ттл
- •Стандартные серии ттл
- •5.1. Классификация и обозначение полевых транзисторов
- •Логические уровни ттл микросхем
- •Семейства ттл микросхем
- •. Диодно-транзисторная логика (дтл)
- •3.2.3. Транзисторно-транзисторная логика
- •3.2.4. Эмиттерно-связанная логика
- •3.2.5. Логические элементы с инжекционным питанием
- •1. Основы микроэлектроники
- •1.1. Гибридные интегральные схемы
- •1.2. Элементы полупроводниковых интегральных схем
- •1.2.1. Биполярные транзисторы и диоды
- •1.2.2. Многоэмиттерные и многоколлекторные транзисторы
- •1.2.3. Транзистор с диодом Шоттки
- •1.2.4. Металл, диэлектрик, полупроводник-транзисторы
- •1.2.5. Резисторы и конденсаторы
- •1.3. Технология изготовления интегральных схем
- •1.3.1. Базовые технологические операции
- •1.3.2. Эпитаксиально-планарная технология
- •1.3.3. Изопланарная технология
- •1.3.4. Технология изготовления мдп-структур
- •2. Аналоговые интегральные схемы
- •2.1. Типовые элементы аналоговых интегральных схем
- •2.1.1. Составные транзисторы
- •2.1.2. Генераторы стабильного тока
- •2.1.3. Динамическая нагрузка
- •2.1.4. Схемы сдвига потенциальных уровней
- •2.2. Усилительные каскады и повторители
- •2.3. Дифференциальные каскады
- •2.4. Выходные каскады аналоговых интегральных схем
- •2.5. Операционные усилители
- •2.6. Применение операционных усилителей
- •2.6.1. Принцип отрицательной обратной связи
- •2.6.2. Инвертирующий усилитель
- •2.6.3. Интегратор и дифференциатор
- •2.6.4 Неинвертирующий усилитель
- •2.6.5. Суммирующий усилитель
- •2.6.6. Дифференциальный усилитель
- •3. Цифровые интегральные схемы
- •3.1. Электронные ключи
- •3.1.1. Электронные ключи на биполярных транзисторах
- •3.1.2. Электронные ключи на полевых транзисторах
- •3.2. Логические элементы интегральных микросхем
- •3.2.1. Транзисторная логика с непосредственными связями
2.6.6. Дифференциальный усилитель
Дифференциальный (резисторный) усилитель, схема которого представлена на рис. 2.30, усиливает разность двух входных сигналов и является сочетанием инвертирующего и неинвертирующего усилений. Выходное напряжение определяется следующей формулой:
.
Рис. 2.30
Если R1 = R2 и R3 = R4, то выходное напряжение будет:
.
Этот случай соответствует минимальной входной напряженности за счет входных токов.
3. Цифровые интегральные схемы
В
предыдущем разделе рассматривались
интегральные схемы (ИС), предназначенные
для обработки аналоговых сигналов, т.
е. сигналов, являющихся непрерывной
функцией времени. Наряду с такими
сигналами, широкое применение находят
сигналы импульсной формы, когда
кратковременное воздействие сигнала
чередуется с паузой. Среди множества
импульсных сигналов наибольшее
распространение получили сигналы
прямоугольной формы (рис. 3.1), которые
принимают лишь два дискретных
значенияUmах и
Umin.
условно называемые логическим нулем и
логической единицей. Как правило,
логическому нулю соответствует низкий
уровень напряжения (обозначается
),
а логической единице высокий уровень
напряжения (обозначается
).
Такие сигналы удобно использовать для
кодирования информации в двоичном коде
и поэтому их называют цифровыми. Разность
напряжений логической единицы и
логического нуля называют размахом
сигнала или логическим перепадом Uл =
–
.
Для четкого различия состояния «О» и
«1» величина Uл должна
быть достаточно большой.
Рис. 3.1
Устройства, работающие с цифровыми сигналами, имеют принципиальные отличия от аналоговых устройств, главное отличие заключается в возможности создания сложных устройств (например, ЭВМ) из большого числа сравнительно простых однотипных элементов, легко выполняемых методом интегральной технологии.
В основе цифровых схем лежат простейшие транзисторные ключи – аналоги металлических контактов, которые характеризуются двумя устойчивыми состояниями: разомкнутым и замкнутым. На базе простейших ключей строятся более сложные схемы: логические элементы, бистабильные ячейки, триггеры и т. д. Цифровые ИС применяются широко в вычислительной технике, устройствах дискретнои автоматики и в технике связи.
3.1. Электронные ключи
Пример упрощенной ключевой схемы показан на рис. 3.2, а. Для ключа характерны два устойчивых состояния: «включено» и «выключено». В состоянии «включено» (ключ замкнут) через ключ течет ток 1, и напряжение на выходе равно нулю, в состоянии «выключено» (ключ разомкнут) ток через ключ не протекает и напряжение на выходе равно Е. В современных ИС роль ключа выполняет активный элемент (АЭ) – биполярный или полевой транзистор (рис. 3.2, б), к выходу которого подключается внешняя нагрузка RH. Под воздействием управляющего сигнала транзистор запирается или отпирается, что соответствует размыканию или размыканию ключа. В открытом состоянии транзистор обладает некоторым небольшим внутренним сопротивлением Ri и на выходе устанавливается низкое напряжение U0 = E Ri / (R + Ri). В закрытом состоянии устанавливается высокое напряжение U1 = Е RН/ (R + RH).
Рис. 3.2