Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОС / 1.docx
Скачиваний:
184
Добавлен:
03.06.2014
Размер:
5.4 Mб
Скачать

Вопрос 22

Проблема замещения страниц

Для предотвращение переполнения памяти, подпрограмма обслуживания отказов страниц дополняется поддержкой замещения страниц.

Для сокращения времени передачи страниц используется бит модификации в таблице страниц: только модифицированные страницы откачиваются на диск.

Замещение страниц дополняет картину и стратегию разделения между виртуальной и физической памятью – большая виртуальная память может быть отображена на небольшую физическую память.

Пример замещения страниц приведен на рис. 18.6.Рис. 18.6. Пример замещения страниц.

В примере имеются два пользовательских процесса, каждый из которых использует по 4 страницы виртуальной памяти. Однако имеется только 6 фреймов в основной памяти, выделенных для пользовательских процессов, (начальные фреймы занимает резидентный монитор ОС). В процессе 1 происходит обращение к данным M, расположенным на странице 3 виртуальной памяти, отсутствующей в основной памяти. В процессе 2 точно так же может произойти обращение к данным B на странице виртуальной памяти 1, которой также нет в основной памяти. Следовательно, ОС должна выполнить замещение страниц, т.е. решить две задачи:

по какому принципу выбирать "жертвы", т.е. страницы для откачки, находящиеся в оперативной памяти, для освобождения необходимых фреймов?

в каком порядке обслужить процессы 1 и 2, в каждом из которых возникла необходимость в свободном фрейме?

Кратко алгоритм замещения страниц можно сформулировать следующим образом:

Найти, где размещается требуемая страница на диске.

Найти свободный фрейм:

Если есть свободный фрейм, использовать его.

Если нет свободных фреймов, использовать алгоритм замещения страниц для выбора фрейма -"жертвы".

Прочитать содержимое требуемой страницы во вновь освобожденный фрейм. Модифицировать таблицы фреймов и страниц.

Продолжить выполнение процесса.

На рис. 18.7 иллюстрируется момент замещения страниц, с предварительной откачкой страницы-жертвы на диск.Рис. 18.7. Замещение страниц с откачкой жертвы на диск.

Этапы замещения страниц: 1 – откачка жертвы; 2 – изменение ее элемента таблицы страниц (бит valid заменяется на invalid); 3 – подкачка на освободившееся место желаемой страницы; 4 – изменение элемента таблицы страниц для новой страницы (бит invalid заменяется на valid; запоминается физический адрес подкачанной страницы).

Алгоритмы замещения страниц

Как видно из рассмотренного выше, поиск оптимального алгоритма замещения страниц должен быть основан на следующем критерии: необходимо добиваться уменьшения коэффициента отказов страниц p.

Оценка алгоритма может быть выполнена путем опробования его на конкретной строке обращений к памяти (строке запросов) и определения числа отказов страниц при данной строке запросов.

Во всех приводимых ниже в данном разделе примерах из области страничной организации строка запросов имеет вид:

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.

График зависимости числа отказов страниц от числа фреймов в основной памяти изображен на рис. 18.8.Рис. 18.8. Зависимость числа отказов страниц от числа фреймов.

В целом, как и подсказывает здравый смысл, зависимость обратно пропорциональная: чем больше имеется фреймов, тем меньше отказов страниц. Однако случаются и аномалии в этом законе, рассмотренные далее.

Алгоритм FIFO (First-In-First-Out).Наиболее простой алгоритм замещения страниц – в качестве жертвы всегда выбирается фрейм, первым из имеющихся считанный в основную память.

Рассмотрим пример использования данного алгоритма.

Пусть строка запросов имеет вид: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.

Случай 1: 3 фрейма (3 страницы могут быть одновременно в памяти для одного процесса). Пусть имеются три процесса. Их таблицы страниц примут вид:

(1, 2, 3) (4, 1, 2) (5, 3, 4).

В данном случае имеет место 9 отказов страниц (проверьте в качестве упражнения).

Случай 2: 4 фрейма. Пусть имеются по-прежнему три процесса. Таблицы страниц в данном случае будут иметь вид:

(1, 2, 3, 4) (5, 1, 2, 3) (4, 5)

Нетрудно проверить, что в данном случае имеет место 10 (!) отказов страниц, несмотря на то, что процесс может иметь больше свободных фреймов, чем в предыдущем случае.

Данная аномалия называется аномалией Belady.

В целом же, как уже говорилось, зависимость такова, что чем больше фреймов может иметь процесс (при достаточно большом числе фреймов), тем меньше отказов страниц.

Пример работы алгоритма FIFO для замещения страниц, при максимальном числе фреймов для процесса, равном 3, приведен на рис. 18.9.Рис. 18.9. Пример работы алгоритма FIFO.

На рис. 18.10 изображен график зависимости числа отказов страниц от числа фреймов при алгоритме FIFO, отображающий аномалию Belady.

Рис. 18.10. Аномалия Belady при использовании алгоритма FIFO замещения страниц.

Оптимальный алгоритм замещения страниц

Одна из возможных стратегий замещения страниц следующая: Замещается та страница, которая не использовалась в течение наибольшего периода времени. Это вполне оправдано с точки зрения здравого смысла: чем раньше страница последний раз использовалась, тем, по-видимому, меньше она необходима в основной памяти.

Рассмотрим пример применения данного алгоритма с той же строкой запроса и с четырьмя максимально возможными фреймами у каждого процесса:

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Нетрудно видеть, что будет иметь место всего 6 отказов страниц (в отличие от алгоритма FIFO с 10 отказами страниц).

Пример использования оптимального алгоритма замещения страниц с той же строкой запроса, которая применялась на рис. 18.9 для алгоритма FIFO, приведен на рис. 18.11.Рис. 18.11. Пример использования оптимального алгоритма замещения страниц.

Алгоритм Least Recently Used (LRU)

Данный алгоритм замещения страниц основан на следующем принципе: Замещается та страница, которая раньше всего использовалась.

Для примера со сторокой запросов: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 число отказов страниц равно всего 4.

Однако следует иметь в виду, что использование системой информации о времени последнего обращения к странице требует хранения в каждом элементе таблицы страниц значения времени последнего обращения (time stamp). Каждый элемент таблицы страниц содержит счетчик. Rаждый раз при обращении к странице через некоторый элемент таблицы страниц содержимое системных часов (clock) копируется в его поле счетчика.

Если требуется изменение в конфигурации страниц, необходимо проанализировать поля счетчиков всех элементов таблицы страниц, чтобы определить, какую именно страницу следует заместить. Для определения элемента таблицы страниц с минимальным счетчиком требуется применить алгоритм поиска минимального элемента в массиве, сложность которого O(n),где n – длина таблицы страниц.

Пример использования алгоритма замещения страниц LRU с той же строкой запроса, что и на рис. 18.9 и рис. 18.11 для других алгоритмов, приведен на рис. 18.12.

Рис. 18.12. Пример использования алгоритма замещения страниц LRU.

Для оптимизации данного алгоритма, чтобы избежать поиска минимального элемента таблицы страниц при каждом замещении страниц, используется стековая реализация – стек номеров страниц хранится в форме двухсвязного списка. При обращении к странице она перемещается в начало списка (для этого требуется изменить 6 указателей). Преимущества данной модификации алгоритма в том, что при замещении страниц не требуется поиска.

На рис. 18.13 приведен пример использования стека в алгоритме LRU для хранения самых недавних обращений к страницам.Рис. 18.13. Использование стека в алгоритме LRU для хранения самых недавних обращений к страницам.

Алгоритмы, близкие к LRU

Имеется несколько алгоритмов, близких к алгоритму LRU, в которых реализованы различные идеи улучшений или упрощений, направленные на то, чтобы уменьшить недостатки LRU.

Бит ссылки (reference bit).В данном алгоритме с каждой страницей связывается бит, первоначально равный 0. При обращении к странице бит устанавливается в 1. Далее, при необходимости замещения страниц, заменяется та страница, у которой бит равен 0 (если такая существует), т.е. страница, к которой не было обращений. Данная версия алгоритма позволяет избежать поиска по таблице страниц. Однако она, очевидно, менее оптимальна, чем LRU.

Второй шанс (second chance).В данной версии алгоритма используются ссылочный бит и показания часов, которые хранятся в каждом элементе таблицы страниц. Замещение страниц основано на показаниях часов. Если страница, которую следует заместить (по показаниям часов), имеет ссылочный бит, равный 1, то выполняются следующие действия:

Установить ссылочный бит в 0;

Оставить страницу в памяти;

Заместить следующую страницу (по показаниям часов), по тем же самым правилам.

Данный алгоритм имеет следующее эвристическое обоснование. Странице, которая дольше всего не использовалась, как бы дается второй шанс на то, что она будет использована, т. е. делается эвристическое предположение, что, по мере возрастания времени, вероятность обращения к странице, к которой давно не было обращений, возрастает.

Схема алгоритма второго шанса изображена на рис. 18.14.Рис. 18.14. Алгоритм второго шанса.

Алгоритмы со счетчиком

Идея, родственная идее алгоритма LRU, - хранить счетчики числа обращений к каждой странице. На основе этой идеи существуют два алгоритма:

- Алгоритм Least Frequently Used (LFU):замещать страницы с минимальным значением счетчика (к которым было меньше всего обращений);

- Алгоритм Most Frequently Used (MFU):замещать страницы с максимальным значением счетчика. Данный алгоритм основан на соображении, что страница с минимальным счетчиком – возможно, лишь недавно загружена, и, видимо, в дальнейшем будет активно использоваться, поэтому она оставляется в памяти.

Выделение фреймов

До сих пор мы рассматривали алгоритмы замещения страниц при определенном числе фреймов, выделенных каждому процессу. Рассмотрим теперь стратегии выделения фреймов. При их выделении ОС исходит из того, чтобы каждому процессу выделить минимально необходимое число страниц.

Однако различные аппаратные платформы имеют свои особенности, что тоже приходится учитывать. Например, в системе IBM 370 требуется 6 (!) страниц, чтобы обработать команду MOVE (пересылки) формата SS (Storage-Storage). В самом деле, длина команды - 6 байтов, так что она может размещается на двух соседних страницах. Кроме того, максимум две страницы требуются для обработки источника и максимум две страницы – для обработки получателя. Разумеется, подобный казус не может произойти в RISC-системах.

В операционных системах используются две основных схемы выделения фреймов - фиксированное выделение и выделение по приоритетам.

Фиксированное выделение фреймов.Наиболее простой вариант - равномерное распределение фреймов процессам. Например, если имеется 100 фреймов и 5 процессов, каждому выделяется по 20 страниц. Используется также пропорциональное распределение – выделять фреймы в соответствии со следующим принципом: если общее число фреймов m, размер процесса – s, а общий размер всех процессов – S, то общее число фреймов, выделенных процессу, равно:

a = m * (s / S).

Выделение по приоритетам.Принцип данного распределения фреймов следующий: применять схему пропорционального распределения, но используя приоритеты, а не размер. Если процесс генерирует отказ страницы, то для замещения выделяется фрейм из процесса с более низким приоритетом.

Глобальное и локальное распределение. Глобальное замещение фреймов означает, что процесс выбирает фрейм для замещения среди всех существующих фреймов всех процессов, т.е. один процесс может взять фрейм у другого. Локальное замещение фреймов, наоборот, гарантирует, что каждый процесс выбирает фрейм для замещения только из числа выделенных ему фреймов.

Thrashing

Данный термин буквально означает метание, тряска.Если процессу не выделено достаточное число страниц, коэффициент отказов страниц очень высок. Это приводит к тому, что процесс занят в основном откачкой и подкачкой страниц. При этом ОС может сделать неверное заключение о низкой производительности использования процессора и, следовательно ... принять решение об увеличении степени мультипрограммирования, т.е. о добавлении нового процесса к системе.

Неформально, thrashing означает катастрофическую нехватку фреймов в основной памяти. На практике для пользователя это выглядит следующим образом (автор сам неоднократно испытывал подобные ощущения, вынужденный работать на SPARC-станции с очень малым объемом памяти): жесткий диск буквально "надрывается" от непрерывных обращений, а процесс исполняется крайне медленно. Интересно отметить, что SPARC-станция с 32 мегабайтами памяти и ОС Solaris успешно выдерживали эти экстремальные нагрузки (причем на данной конфигурации пропускалась достаточно большая Java-программа). Это говорит о высокой надежности системы Solaris.

Другой реальный пример – использование ОС Windows XP (Service Pack 3) на компьютере с 512 мегабайтами памяти. При этом возникает почти такое же ощущение - сначала кажется, что неисправен жесткий диск, но затем сразу осознаешь, что все дело в нехватке памяти: самые простые программы, такие как Internet Explorer, Windows Explorer и др., будучи вызванными одновременно (что является обычной практикой) переполняют основную память и вынуждают операционную систему при любом дополнительном действии пользователя (даже при простом передвижении полосы прокрутки по именам файлов в Windows Explorer) непрерывной откачкой и подкачкой.

Модель рабочего множества

Если более глубоко проанализировать ситуацию с thrashing, то возникает вопрос, с какой целью используется страничная организация. При использовании локальной модели распределения фреймов, процесс мигрирует от одной локальной модели к другой. Однако локальные модели различных процессов могут пересекаться.

Выражаясь более простым языком, thrashing происходит, если сумма размеров локальных потребностей процессов в основной памяти больше общего размера памяти.

Для борьбы с подобными явлениями в операционных системах для распределения фреймов используется модель рабочего множества. Обозначим через (рабочее множество) фиксированное число обращений к страницам.

Рассмотрим WSSi (рабочее множество процесса Pi ) - общее число обращений к страницам в самой недавней (меняется в зависимости от времени).

Если очень мало, не рассматриваем полную локальную потребность.

Если слишком велико, рассматриваем несколько локальных потребностей.

Если , рассматриваем всю программу.

Вычислим величину - общий объем требований фреймов всех процессов. Пусть m – размер основной памяти.

Если D > m то Thrashing ( m - общий размер памяти).

Политика ОС по борьбе с thrashing’ом заключается в том, чтобы, если D > m, приостановить один из процессов.

Пример использования рабочего множества и вычисления WSSi приведен на рис. 18.16.Рис. 18.16. Пример использования рабочего множества.

Соседние файлы в папке ОС