
- •1. Понятие операционной системы и цели ее работы
- •Компоненты компьютерной системы
- •Общая картина функционирования компьютерной системы
- •Классификация компьютерных систем
- •Классификация компьютерных архитектур
- •История ос
- •Отечественные операционные системы
- •Облачные вычисления и ос для облачных вычислений(развитие концепций и возможностей ос)
- •Вопрос 2
- •Особенности операционных систем для компьютеров общего назначения (mainframes)
- •Режим разделения времени и особенности ос с режимом разделения времени
- •Системы и ос реального времени
- •Особенности ос для персональных компьютеров
- •Карманные компьютеры (handhelds) и их ос
- •Параллельные компьютерные системы и особенности их ос.
- •Симметричные и асимметричные мультипроцессорные системы
- •Распределенные компьютерные системы и особенности их ос
- •Виды серверов в клиент-серверных компьютерных системах
- •Кластерные вычислительные системы и их ос
- •3. Вычислительные среды
- •Архитектура компьютерной системы
- •Функционирование компьютерной системы
- •Обработка прерываний
- •Архитектура ввода-вывода
- •Вопрос 4
- •Структура памяти
- •Аппаратная защита памяти и процессора
- •Аппаратная защита адресов памяти в системах с теговой архитектурой
- •Организация аппаратной защиты памяти и процессора
- •5. Основные компоненты ос
- •Исполнение программ в ms dos
- •Исполнение нескольких программ в unix
- •Коммуникационные модели
- •6. Уровни абстракции
- •Уровни абстракции ос
- •Структура системы ms dos
- •Структура системы unix
- •Операционные системы с микроядром
- •Виртуальная машина Java (jvm)
- •Цели проектирования и разработки ос
- •Механизмы и политики
- •Реализация операционных систем
- •Генерация операционной системы
- •7. Понятие процесса
- •Состояния процесса
- •Блок управления процессом
- •Переключение с одного процесса на другой
- •Очереди, связанные с диспетчеризацией процессов
- •Переключение контекста
- •Вопрос 8
- •Уничтожение процесса
- •Парадигма (шаблон) взаимодействия процессов: производитель – потребитель
- •9. Коммуникация процессов
- •Непосредственная коммуникация процессов
- •Косвенная коммуникация процессов (про синхронизацию есть немного)
- •Буферизация и очередь сообщений (сокеты)
- •Основные понятия диспетчеризации процессов
- •Вопрос 10 Однопоточные и многопоточные процессы
- •Проблемы многопоточности
- •Потоки posix (Pthreads
- •Потоки в Java
- •Вопрос 12 Основные понятия диспетчеризации процессов
- •Планировщик процессора
- •Критерии диспетчеризации
- •Предсказание длины следующего периода активности
- •Вопрос 13 Диспетчеризация по приоритетам
- •Стратегия Round Robin (rr)
- •Многоуровневая очередь
- •Многоуровневые аналитические очереди
- •Планирование в Solaris
- •Планирование в Windows 2000
- •Вопрос 14 История синхронизации
- •Синхронизация процессов по критическим секциям
- •Алгоритм решения проблемы критической секции
- •Вопрос 15 Синхронизация на основе общих семафоров
- •Семафоры как общее средство синхронизации
- •Общие и двоичные семафоры
- •Решение классических задач синхронизации с помощью семафоров
- •Вопрос 16
- •Мониторы
- •Синхронизация в ос Solaris
- •Синхронизация в Windows 2000
- •Вопрос 17 Проблема тупиков
- •Модель системы
- •Граф распределения ресурсов
- •Поиск тупиков по графу распределения ресурсов
- •Методы обработки тупиков
- •Предотвращение тупиков
- •Избежание тупиков
- •Безопасное состояние системы
- •Вопрос 18
- •19. Управление памятью.
- •Вопрос 20
- •Вопрос 22
- •23. Понятие файла
- •Вопрос 24
Потоки в Java
Как уже отмечалось, Java – первая платформа для разработки программ, в которой многопоточность поддержана на уровне языка и базовых библиотек. Потоки в Java могут быть созданы следующими способами:
Как расширения класса Thread
Как классы, реализующие интерфейс Runnable, который содержит единственный метод run – исполняемое тело потока.
Потоки в Java управляются JVM. Возможно создание групп потоков и иерархии таких групп.
Возможные состояния потоков в Java
изображены на рис. 10.7. Подобно потокам
в ОС, поток в Java создается и находится
в состоянии новый, затем – выполняемый
; при вызове методов типа wait, sleep и др.
поток переходит в состояние ожидания;
при завершении метода run поток завершается.
Рис.
10.7. Состояния потоков в Java.
Вопрос 12 Основные понятия диспетчеризации процессов
Диспетчеризация процессора – распределение его времени между процессами в системе. Цель диспетчеризации – максимальная загрузка процессора, достигаемая с помощью мультипрограммирования.
Исполнение любого процесса можно рассматривать как цикл CPU / I-O – чередование периодов использования процессора и ожидания ввода-вывода.
Распределение периодов активности процессора ( bursts ) и ввода-вывода изображено на рис. 11.1.
Рис.
11.1. Последовательность активных фаз
процессора и фаз ввода-вывода.
На рис. 11.2 изображена примерная гистограмма
периодов активности процессора,
основанная на анализе реального поведения
процессов в операционных системах.Рис.
11.2. Гистограмма периодов активности
процессора.
Из схемы видно, что чем короче период активности, тем выше частота таких периодов, и наоборот, т.е. частота периодов активности обратно пропорциональна их длительности.
Планировщик процессора
Планировщик – компонента ОС, которая выбирает один из нескольких процессов, загруженных в память и готовых к выполнению, и выделяет процессор для одного из них.
Решения по диспетчеризации могут быть приняты в случаях, если процесс:
Переключается из состояния выполнения в состояние ожидания.
Переключается из состояния выполнения в состояние готовности к выполнению.
Переключается из состояния ожидания в состояние готовности.
Завершается.
Диспетчеризация типов 1 и 4 обозначается термином диспетчеризация без прерывания процесса (non-preemptive).
Диспетчеризация типов 2 и 3 обозначается термином диспетчеризация с прерыванием процесса (preemptive).
Собственно диспетчер процессора
Диспетчер процессора – компонента ОС, предоставляющая процессор тому процессу, который был выбран планировщиком. Диспетчер выполняет последовательность действий:
Переключает контекст
Переключает процессор в пользовательский режим
Выполняет переход по соответствующему адресу в пользовательскую программу для ее рестарта.
Скрытая активность (латентность) диспетчера (dispatch latency) – время, требуемое для диспетчера, чтобы остановить один процесс и стартовать другой. Разумеется, система должна стремиться минимизировать это время, однако набор критериев диспетчеризации более сложен.