
- •1. Понятие операционной системы и цели ее работы
- •Компоненты компьютерной системы
- •Общая картина функционирования компьютерной системы
- •Классификация компьютерных систем
- •Классификация компьютерных архитектур
- •История ос
- •Отечественные операционные системы
- •Облачные вычисления и ос для облачных вычислений(развитие концепций и возможностей ос)
- •Вопрос 2
- •Особенности операционных систем для компьютеров общего назначения (mainframes)
- •Режим разделения времени и особенности ос с режимом разделения времени
- •Системы и ос реального времени
- •Особенности ос для персональных компьютеров
- •Карманные компьютеры (handhelds) и их ос
- •Параллельные компьютерные системы и особенности их ос.
- •Симметричные и асимметричные мультипроцессорные системы
- •Распределенные компьютерные системы и особенности их ос
- •Виды серверов в клиент-серверных компьютерных системах
- •Кластерные вычислительные системы и их ос
- •3. Вычислительные среды
- •Архитектура компьютерной системы
- •Функционирование компьютерной системы
- •Обработка прерываний
- •Архитектура ввода-вывода
- •Вопрос 4
- •Структура памяти
- •Аппаратная защита памяти и процессора
- •Аппаратная защита адресов памяти в системах с теговой архитектурой
- •Организация аппаратной защиты памяти и процессора
- •5. Основные компоненты ос
- •Исполнение программ в ms dos
- •Исполнение нескольких программ в unix
- •Коммуникационные модели
- •6. Уровни абстракции
- •Уровни абстракции ос
- •Структура системы ms dos
- •Структура системы unix
- •Операционные системы с микроядром
- •Виртуальная машина Java (jvm)
- •Цели проектирования и разработки ос
- •Механизмы и политики
- •Реализация операционных систем
- •Генерация операционной системы
- •7. Понятие процесса
- •Состояния процесса
- •Блок управления процессом
- •Переключение с одного процесса на другой
- •Очереди, связанные с диспетчеризацией процессов
- •Переключение контекста
- •Вопрос 8
- •Уничтожение процесса
- •Парадигма (шаблон) взаимодействия процессов: производитель – потребитель
- •9. Коммуникация процессов
- •Непосредственная коммуникация процессов
- •Косвенная коммуникация процессов (про синхронизацию есть немного)
- •Буферизация и очередь сообщений (сокеты)
- •Основные понятия диспетчеризации процессов
- •Вопрос 10 Однопоточные и многопоточные процессы
- •Проблемы многопоточности
- •Потоки posix (Pthreads
- •Потоки в Java
- •Вопрос 12 Основные понятия диспетчеризации процессов
- •Планировщик процессора
- •Критерии диспетчеризации
- •Предсказание длины следующего периода активности
- •Вопрос 13 Диспетчеризация по приоритетам
- •Стратегия Round Robin (rr)
- •Многоуровневая очередь
- •Многоуровневые аналитические очереди
- •Планирование в Solaris
- •Планирование в Windows 2000
- •Вопрос 14 История синхронизации
- •Синхронизация процессов по критическим секциям
- •Алгоритм решения проблемы критической секции
- •Вопрос 15 Синхронизация на основе общих семафоров
- •Семафоры как общее средство синхронизации
- •Общие и двоичные семафоры
- •Решение классических задач синхронизации с помощью семафоров
- •Вопрос 16
- •Мониторы
- •Синхронизация в ос Solaris
- •Синхронизация в Windows 2000
- •Вопрос 17 Проблема тупиков
- •Модель системы
- •Граф распределения ресурсов
- •Поиск тупиков по графу распределения ресурсов
- •Методы обработки тупиков
- •Предотвращение тупиков
- •Избежание тупиков
- •Безопасное состояние системы
- •Вопрос 18
- •19. Управление памятью.
- •Вопрос 20
- •Вопрос 22
- •23. Понятие файла
- •Вопрос 24
Потоки posix (Pthreads
В качестве конкретной модели многопоточности рассмотрим потоки POSIX (напомним, что данная аббревиатура расшифровывается как Portable Operating Systems Interface of uniX kind – стандарты для переносимых ОС типа UNIX). Многопоточность в POSIX специфицирована стандартом IEEE 1003.1c, который описывает API для создания и синхронизации потоков. Отметим, что POSIX-стандарт API определяет лишь требуемое поведение библиотеки потоков. Реализация потоков оставляется на усмотрение авторов конкретной POSIX-совместимой библиотеки. POSIX-потоки распространены в ОС типа UNIX, а также поддержаны, с целью совместимости программ, во многих других ОС, например, Solaris и Windows NT.
Стандарт POSIX определяет два основных типа данных для потоков: pthread_t – дескриптор потока ; pthread_attr_t – набор атрибутов потока.
Стандарт POSIX специфицирует следующий набор функций для управления потоками:
pthread_create(): создание потока
pthread_exit():завершение потока (должна вызываться функцией потока при завершении)
pthread_cancel():отмена потока
pthread_join():заблокировать выполнение потока до прекращения другого потока, указанного в вызове функции
pthread_detach():освободить ресурсы занимаемые потоком (если поток выполняется, то освобождение ресурсов произойдёт после его завершения)
pthread_attr_init():инициализировать структуру атрибутов потока
pthread_attr_setdetachstate():указать системе, что после завершения потока она может автоматически освободить ресурсы, занимаемые потоком
pthread_attr_destroy():освободить память от структуры атрибутов потока (уничтожить дескриптор).
Имеются следующие примитивы синхронизации POSIX-потоков с помощью мьютексов (mutexes) – аналогов семафоров – и условных переменных (conditional variables) – оба эти типа объектов для синхронизации подробно рассмотрены позже в данном курсе:
- pthread_mutex_init() – создание мюьтекса;
- pthread_mutex_destroy() – уничтожение мьютекса;
- pthread_mutex_lock() – закрытие мьютекса;
- pthread_mutex_trylock() – пробное закрытие мьютекса (если он уже закрыт, вызов игнорируется, и поток не блокируется);
- pthread_mutex_unlock() – открытие мьютекса;
- pthread_cond_init() – создание условной переменной;
- pthread_cond_signal() – разблокировка условной переменной;
- pthread_cond_wait() – ожидание по условной переменной.
Рассмотрим пример использования POSIX-потоков на языке Си.
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <pthread.h>
static void wait_thread(void)
{
time_t start_time = time(NULL);
while (time(NULL) == start_time)
{
// никаких действий, кроме занятия процессора на время до 1 с.
}
}
static void *thread_func(void *vptr_args)
{ int i;
for (i = 0; i < 20; i++) {
fputs(" b\n", stderr);
wait_thread();
}
return NULL;
}
int main(void)
{ int i;
pthread_t thread;
if (pthread_create(&thread, NULL, thread_func, NULL) != 0) {
return EXIT_FAILURE;
}
for (i = 0; i < 20; i++) {
puts("a");
wait_thread();
}
if (pthread_join(thread, NULL) != 0) {
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
Пример иллюстрирует параллельное выполнение основного потока, выдающего в стандартный вывод последовательность букв "a", и дочернего потока, выдающего в стандартный поток ошибок (stderr) последовательность букв "b". Обратите внимание на особенности создания потока (pthread_create), указания его тела (исполняемой процедуры потока thread_func) и ожидания завершения дочернего потока (pthread_join).
Рис.
11.2. Гистограмма периодов активности
процессора.
Из схемы видно, что чем короче период активности, тем выше частота таких периодов, и наоборот, т.е. частота периодов активности обратно пропорциональна их длительности.
Потоки и процессы в Solaris (+ другие ОС)
В ОС Solaris, как уже было отмечено, используется модель потоков много / много. Кроме того, в системе используется также уже известное нам понятие облегченный процесс (lightweight process) промежуточное между концепцией пользовательского потока и системного потока. Таким образом, в ОС Solaris каждый пользовательский поток отображается в свой облегченный процесс, который, в свою очередь, отображается в поток ядра; последний может исполняться на любом процессоре (или ядре процессора) компьютерной системы. Схема организации потоков в Solaris изображена на рис. 10.5.
Рис.
10.5. Потоки в Solaris.
На рис. 10.6 изображена схема организации процесса в ОС Solaris.
Рис.
10.6. Процессы в Solaris.
На схеме видно, что каждый процесс содержит, кроме стандартной информации блока управления процессом, также список всех своих облегченных процессов для управления ими.
Потоки в Windows 2000
Как уже отмечалось, в системе Windows реализована модель многопоточности "один / один". Каждый поток содержит:
идентификатор потока (thread id);
набор регистров
отдельные стеки для пользовательских и системных процедур;
область памяти для локальных данных потока (thread-local storage – TLS).
Потоки в Linux
В системе Linux потоки называются tasks (задачами),а не threads. Поток создается системным вызовом clone(). Данный системный вызов позволяет дочерней задаче использовать общее адресное пространство с родительской задачей (процессом).