Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОС / 1.docx
Скачиваний:
184
Добавлен:
03.06.2014
Размер:
5.4 Mб
Скачать

Проблемы многопоточности

Многопоточность – весьма сложная, еще не полностью изученная и, тем более, не полностью формализованная область, в которой имеется много интересных проблем. Рассмотрим некоторые из них.

Семантика системных вызовов fork() и exec().Как уже отмечалось, в классической ОС UNIX системный вызов fork создает новый "тяжеловесный" процесс со своим адресным пространством, что значительно "дороже", чем создание потока. Однако, с целью поддержания совместимости программ снизу вверх, приходится сохранять эту семантику, а многопоточность вводить с помощью новых системных вызовов.

Прекращение потоков. Важной проблемой является проблема прекращения потоков: например, если родительский поток прекращается, то должен ли при этом прекращаться дочерний поток? Если прекращается стандартный процесс, создавший несколько потоков, то должны ли прекращаться все его потоки? Ответы на эти вопросы в разных ОС неоднозначны.

Обработка сигналов. Сигналы в UNIX – низкоуровневый механизм обработки ошибочных ситуаций. Примеры сигналов: SIGSEGV - нарушение сегментации (обращение по неверному адресу, чаще всего по нулевому); SIGKILL – сигнал процессу о выполнении команды kill его уничтожения. Пользователь может определить свою процедуру-обработчик сигнала системным вызовом signal. Проблема в следующем: как распространяются сигналы в многопоточных программах и каким потоком они должны обрабатываться? В большинстве случаев этот вопрос решается следующим образом: сигнал обрабатывается потоком, в котором он сгенерирован, и влияет на исполнение только этого потока. В более современных ОС (например, Windows 2000 и более поздних версиях Windows), основанных на объектно-ориентированной методологии, концепция сигнала заменена более высокоуровневой концепцией исключения (exception).Исключение распространяется по стеку потока в порядке, обратном порядку вызовов методов, и обраба тывается первым из них, в котором система находит подходящий обработчик. Аналогичная схема обработки исключений реализована в Java и в .NET.

Группы потоков. В сложных задачах, например, задачах моделирования, при большом числе разнородных потоков, возникает потребность в их структурировании с помощью концепции группы потоков – совокупности потоков, имеющей свое собственное имя, над потоками которой определены групповые операции. Наиболее удачно, с нашей точки зрения, группы потоков реализованы в Java (с помощью класса ThreadGroup ). Следует отметить также эффективную реализацию пулов потоков (ThreadPool) в .NET.

Локальные данные потока (thread-local storage - TLS) – данные, принадлежащие только определенному потоку и используемые только этим потоком. Необходимость в таких данных очевидна, так как многопоточность – весьма важный метод распараллеливания решения большой задачи, при котором каждый поток работает над решением порученной ему части. Все современные операционные системы и платформы разработки программ поддерживают концепцию локальных данных потока.

Синхронизация потоков. Поскольку потоки, как и процессы (см. "Методы взаимодействия процессов") могут использовать общие ресурсы и реагировать на общие события, необходимы средства их синхронизации. Эти средства подробно рассмотрены позже в данном курсе.

Тупики (deadlocks) и их предотвращение. Как и процессы (см. "Методы взаимодействия процессов"), потоки могут взаимно блокировать друг друга (т.е. может создаться ситуация deadlock ), при их неаккуратном программировании. Меры по борьбе с тупиками подробно рассмотрены позже в данном курсе.

Соседние файлы в папке ОС