
- •1. Понятие операционной системы и цели ее работы
- •Компоненты компьютерной системы
- •Общая картина функционирования компьютерной системы
- •Классификация компьютерных систем
- •Классификация компьютерных архитектур
- •История ос
- •Отечественные операционные системы
- •Облачные вычисления и ос для облачных вычислений(развитие концепций и возможностей ос)
- •Вопрос 2
- •Особенности операционных систем для компьютеров общего назначения (mainframes)
- •Режим разделения времени и особенности ос с режимом разделения времени
- •Системы и ос реального времени
- •Особенности ос для персональных компьютеров
- •Карманные компьютеры (handhelds) и их ос
- •Параллельные компьютерные системы и особенности их ос.
- •Симметричные и асимметричные мультипроцессорные системы
- •Распределенные компьютерные системы и особенности их ос
- •Виды серверов в клиент-серверных компьютерных системах
- •Кластерные вычислительные системы и их ос
- •3. Вычислительные среды
- •Архитектура компьютерной системы
- •Функционирование компьютерной системы
- •Обработка прерываний
- •Архитектура ввода-вывода
- •Вопрос 4
- •Структура памяти
- •Аппаратная защита памяти и процессора
- •Аппаратная защита адресов памяти в системах с теговой архитектурой
- •Организация аппаратной защиты памяти и процессора
- •5. Основные компоненты ос
- •Исполнение программ в ms dos
- •Исполнение нескольких программ в unix
- •Коммуникационные модели
- •6. Уровни абстракции
- •Уровни абстракции ос
- •Структура системы ms dos
- •Структура системы unix
- •Операционные системы с микроядром
- •Виртуальная машина Java (jvm)
- •Цели проектирования и разработки ос
- •Механизмы и политики
- •Реализация операционных систем
- •Генерация операционной системы
- •7. Понятие процесса
- •Состояния процесса
- •Блок управления процессом
- •Переключение с одного процесса на другой
- •Очереди, связанные с диспетчеризацией процессов
- •Переключение контекста
- •Вопрос 8
- •Уничтожение процесса
- •Парадигма (шаблон) взаимодействия процессов: производитель – потребитель
- •9. Коммуникация процессов
- •Непосредственная коммуникация процессов
- •Косвенная коммуникация процессов (про синхронизацию есть немного)
- •Буферизация и очередь сообщений (сокеты)
- •Основные понятия диспетчеризации процессов
- •Вопрос 10 Однопоточные и многопоточные процессы
- •Проблемы многопоточности
- •Потоки posix (Pthreads
- •Потоки в Java
- •Вопрос 12 Основные понятия диспетчеризации процессов
- •Планировщик процессора
- •Критерии диспетчеризации
- •Предсказание длины следующего периода активности
- •Вопрос 13 Диспетчеризация по приоритетам
- •Стратегия Round Robin (rr)
- •Многоуровневая очередь
- •Многоуровневые аналитические очереди
- •Планирование в Solaris
- •Планирование в Windows 2000
- •Вопрос 14 История синхронизации
- •Синхронизация процессов по критическим секциям
- •Алгоритм решения проблемы критической секции
- •Вопрос 15 Синхронизация на основе общих семафоров
- •Семафоры как общее средство синхронизации
- •Общие и двоичные семафоры
- •Решение классических задач синхронизации с помощью семафоров
- •Вопрос 16
- •Мониторы
- •Синхронизация в ос Solaris
- •Синхронизация в Windows 2000
- •Вопрос 17 Проблема тупиков
- •Модель системы
- •Граф распределения ресурсов
- •Поиск тупиков по графу распределения ресурсов
- •Методы обработки тупиков
- •Предотвращение тупиков
- •Избежание тупиков
- •Безопасное состояние системы
- •Вопрос 18
- •19. Управление памятью.
- •Вопрос 20
- •Вопрос 22
- •23. Понятие файла
- •Вопрос 24
Проблемы многопоточности
Многопоточность – весьма сложная, еще не полностью изученная и, тем более, не полностью формализованная область, в которой имеется много интересных проблем. Рассмотрим некоторые из них.
Семантика системных вызовов fork() и exec().Как уже отмечалось, в классической ОС UNIX системный вызов fork создает новый "тяжеловесный" процесс со своим адресным пространством, что значительно "дороже", чем создание потока. Однако, с целью поддержания совместимости программ снизу вверх, приходится сохранять эту семантику, а многопоточность вводить с помощью новых системных вызовов.
Прекращение потоков. Важной проблемой является проблема прекращения потоков: например, если родительский поток прекращается, то должен ли при этом прекращаться дочерний поток? Если прекращается стандартный процесс, создавший несколько потоков, то должны ли прекращаться все его потоки? Ответы на эти вопросы в разных ОС неоднозначны.
Обработка сигналов. Сигналы в UNIX – низкоуровневый механизм обработки ошибочных ситуаций. Примеры сигналов: SIGSEGV - нарушение сегментации (обращение по неверному адресу, чаще всего по нулевому); SIGKILL – сигнал процессу о выполнении команды kill его уничтожения. Пользователь может определить свою процедуру-обработчик сигнала системным вызовом signal. Проблема в следующем: как распространяются сигналы в многопоточных программах и каким потоком они должны обрабатываться? В большинстве случаев этот вопрос решается следующим образом: сигнал обрабатывается потоком, в котором он сгенерирован, и влияет на исполнение только этого потока. В более современных ОС (например, Windows 2000 и более поздних версиях Windows), основанных на объектно-ориентированной методологии, концепция сигнала заменена более высокоуровневой концепцией исключения (exception).Исключение распространяется по стеку потока в порядке, обратном порядку вызовов методов, и обраба тывается первым из них, в котором система находит подходящий обработчик. Аналогичная схема обработки исключений реализована в Java и в .NET.
Группы потоков. В сложных задачах, например, задачах моделирования, при большом числе разнородных потоков, возникает потребность в их структурировании с помощью концепции группы потоков – совокупности потоков, имеющей свое собственное имя, над потоками которой определены групповые операции. Наиболее удачно, с нашей точки зрения, группы потоков реализованы в Java (с помощью класса ThreadGroup ). Следует отметить также эффективную реализацию пулов потоков (ThreadPool) в .NET.
Локальные данные потока (thread-local storage - TLS) – данные, принадлежащие только определенному потоку и используемые только этим потоком. Необходимость в таких данных очевидна, так как многопоточность – весьма важный метод распараллеливания решения большой задачи, при котором каждый поток работает над решением порученной ему части. Все современные операционные системы и платформы разработки программ поддерживают концепцию локальных данных потока.
Синхронизация потоков. Поскольку потоки, как и процессы (см. "Методы взаимодействия процессов") могут использовать общие ресурсы и реагировать на общие события, необходимы средства их синхронизации. Эти средства подробно рассмотрены позже в данном курсе.
Тупики (deadlocks) и их предотвращение. Как и процессы (см. "Методы взаимодействия процессов"), потоки могут взаимно блокировать друг друга (т.е. может создаться ситуация deadlock ), при их неаккуратном программировании. Меры по борьбе с тупиками подробно рассмотрены позже в данном курсе.