
- •1. Определение ос. Функции ос. Процессы и потоки. Классификация ос. История развития.
- •1.1 Определение ос.
- •Уровни вс.
- •Микроархитектура.
- •Машинный язык.
- •Системное и прикладное по.
- •1.2 Основная функция ос.
- •Основные ресурсы вс.
- •Дополнительная функция ос.
- •1.3 Мультипрограммирование.
- •Процессы и потоки.
- •Варианты мультипрограммирования.
- •Приоритетное обслуживание.
- •Динамический приоритет.
- •Поддержка многопользовательского режима.
- •Многопроцессорная обработка.
- •Виды мультипроцессирования.
- •Системы пакетной обработки.
- •Системы разделения времени.
- •Системы реального времени.
- •Гибридные системы.
- •Структурная организация операционных систем.
- •Монолитная структура.
- •Многоуровневая структура.
- •Понятие ядра.
- •Модульное ядро.
- •Микроядро.
- •Достоинства и недостатки микроядра.
- •Ооп: достоинства и недостатки.
- •1.5 Эволюция операционных систем. Появление ос.
- •Первый “баг”.
- •Этапы эволюции.
- •1 Этап (1940-60).
- •2 Этап (1965-75).
- •3 Этап (1970-80).
- •4 Этап (1980-90).
- •5 Этап (1990 – …).
- •2. Операционная система ms Windows 2000 и выше. Общая характеристика и основные функции. Структура ms Windows 2000-2003. Объекты в ms Windows 2000-2003.
- •2.2 Основная характеристика Windows 2000-2008.
- •2.3 Архитектура ос Windows 2000-2003. Краткая характеристика.
- •Структура ядра.
- •2.4 Объекты Windows 2000-2008.
- •Назначение объектов.
- •Типы объектов Windows 2000-2008.
- •Структура объектов Windows 2000-2003.
- •Удержание объектов.
- •Учет использования ресурсов.
- •Защита объектов.
- •Избирательный доступ.
- •3. Основы файловых систем. Файлы и их атрибуты. Каталоги. Логическая организация фс. Логическая, физическая организация файлов. Кэширование. Raid - системы.
- •4. Основы файловых систем. Файлы и их атрибуты. Каталоги. Логическая организация фс. Логическая, физическая организация файлов. Способы учёта свободного дискового пространства.
- •3.1 Основы файловых систем.
- •3.2, 3.3 Файлы и их атрибуты. Каталоги.
- •3.4 Логическая организация фс.
- •3.5 Логическая, физическая организация файлов.
- •3.6 Кэширование.
- •Кэширование диска.
- •3.7 Raid - системы.
- •Raid - 0.
- •Raid - 1.
- •Raid - 4.
- •Raid – 5.
- •Сравнение raid-систем.
- •5. Файловые системы fat и fat32. Структура логического диска. Элемент каталога. Логическая, физическая организация файлов. Хранение длинных имён. Raid – системы.
- •5.1 Файловая система fat16.
- •5.2 Структура логического диска fat.
- •5.3 Элемент каталога fat16.
- •5.4 Логическая организация данных.
- •Фрагментация и дефрагментация.
- •Размеры разделов и кластеров fat16 для Windows 95-2000.
- •Файловая система vfat.
- •Long File Names.
- •Элемент каталога vfat.
- •Пример длинного имени.
- •6.1 Файловая система ntfs.
- •6.2 Тома ntfs.
- •6.3 Mft и ее структура.
- •6.4 Атрибуты файлов.
- •6.5 Хранение файлов.
- •6.6 Сжатие файлов.
- •6.7 Защита целостности данных.
- •6.8 Дополнительные возможности.
- •7. Сравнение структуры логического диска fat32 и тома ntfs . Функции win32 api для работы с файлами.
- •8. Сравнение структуры логического диска Fat32 и тома ntfs. Варианты организации асинхронной работы с файлами.
- •7.1 Файловая система ntfs vs. Fat.
- •7.2 Функции win32 api для работы с файлами.
- •9. Методы распределения памяти с использованием дискового пространства. Стратегии управления виртуальной памятью.
- •Классификация методов распределения памяти.
- •9.1 Методы распределения памяти с использованием дискового пространства.
- •Страничное распределение.
- •Сегментное распределение.
- •Сегментно-страничное распределение.
- •9.2 Стратегии управления виртуальной памятью (свопинг).
- •Понятие «trashing».
- •10. Архитектура памяти ms Windows 2000. Менеджер вп. Виртуальное ап. Средства защиты памяти. Страничное преобразование. Реализация свопинга в ms Windows 2000-2003.
- •Архитектура api управления памятью.
- •11. Архитектура памяти ms Windows 2000-2003. Организация «статической » виртуальной памяти. Блоки адресов. Состояния блоков адресов. Функции Win32 api.
- •12. Архитектура памяти в ms Windows 200-2003. Организация «динамической» виртуальной памяти. Назначение и преимущество по сравнению с кучами ansi c. Функции Win32 api.
- •13. Архитектура памяти в ms Windows 2000-2003. Проецируемые файлы, назначение и использование. Функции Win32 api.
- •Проецируемые файлы.
- •14. Объекты управления центральным процессором и объединения ресурсов в ms Windows 2000-2003. Атрибуты процессов и потоков. Классы приоритетов.
- •14.1, 14.2 Управление центральным процессором и объединение ресурсов.
- •Атрибуты процессов и потоков.
- •Объекты Windows .
- •Процессы.
- •Потоки.
- •Задание (job).
- •Волокна (fibers).
- •14.3 Классы приоритетов.
- •15. Общие принципы диспетчеризация (планирование загрузки) в ms Windows 2000-2003. Классы приоритетов. Относительные приоритеты. Динамическое изменение приоритетов.
- •15.1 Общие принципы диспетчеризация (планирование загрузки) в ms Windows 2000-2003.
- •Планирование загрузки однопроцессорной системы.
- •15.3 Относительные приоритеты потоков.
- •15.4 Динамическое изменение приоритетов.
- •16. Граф состояний потоков в ms Windows 2000-2003. Поток простоя. Принципы адаптивного планирования.
- •16.1 Граф состояний потоков в ms Windows 2000.
- •16.2 Поток простоя.
- •16.3 Принципы адаптивного планирования.
- •17. Граф состояний потоков в ms Windows 2000-2003. Особенности планирования в многопроцессорных системах.
- •17.2 Особенности планирования в многопроцессорных системах.
- •18. Граф состояний потоков в ms Windows 2000-2003. Особенности планирования в ос ms Windows Vista и Server 2008.
- •18.2 Особенности планирования в ос ms Windows Vista и Server 2008.
- •19. Планирование загрузки процессорного времени в ms windows 2000-2003. Функции win 32 api создания и завершение процессов и потоков, управление потоками
- •20. Планирование загрузки процессорного времени в ms windows 2000-2003. Функции win 32 api создания и завершения потоков.
- •Управление потоками.
- •21. Критические секции и состязания. Семафоры, Мьютексы. Задача о читателях и писателях. Предотвращение критических ситуаций и средства синхронизации процессов
- •23. Синхронизация потоков с использованием объектов ядра ms Windows 2000-2003. Основные принципы синхронизации. События. Семафоры. Функции win 32 api.
- •24. Синхронизация потоков с использованием объектов ядра ms Windows 2000-2003. Основные принципы синхронизации. Таймеры ожидания. Мьютексы. Функции win 32 api.
- •25. Межпроцессорное взаимодействие. Передача информации в ms Windows 2000-2003. Анонимные каналы. Почтовые ящики. Функции win 32 api.
- •26. Межпроцессорное взаимодействие. Передача информации в ms Windows 2000-2003. Именованные каналы. Почтовые ящики. Функции win 32 api.
BOOL GetExitCodeProcess
( HANDLE hProcess, PDWORD pdwExitCode);
Управление динамическими приоритетами потоков процесса
BOOL SetProcessPriorityBoost(
HANDLE hProcess, // дескриптор процесса
BOOL DisablePriorityBoost // состояние //форсированного приоритета
);
BOOL GetProcessPriorityBoost(
HANDLE hProcess, // дескриптор процесса
PBOOL pDisablePriorityBoost // состояние //форсированного приоритета
);
Для выполнения процесс должен иметь право доступа PROCESS_SET_INFORMATION
20. Планирование загрузки процессорного времени в ms windows 2000-2003. Функции win 32 api создания и завершения потоков.
Управление потоками.
Флаг CREATE_SUSPENDED
Если поток создан с флагом CREATE_SUSPENDED, то после своего создания он остается в приостановленном состоянии. Вы можете настроить некоторые его свойства (например, приоритет, о котором мы поговорим позже). Закончив настройку, Вы должны разрешить выполнение потока. Для этого вызовите ResumeThread и пере дайте описатель потока, возвращенный функцией CreateThread.
DWORD ResumeThread(HANDLE hThread);
Выполнение потока можно приостановить не только при его создании с флагом CREATE_SUSPENDED, но и вызовом SuspendThread. Выполнение отдельного потока можно приостанавливать несколько раз. Если поток приостановлен 3 раза, то и возобновлен он должен быть тоже 3 раза — лишь тогда система выделит ему процессорное время.
DWORD SuspendThread(HANDLE hThread);
Засыпание и переключение потоков
VOID Sleep ( DWORD dwMilliseconds );
Эта функция приостанавливает поток па dwMilliseconds миллисекунд. Отметим несколько важных моментов, связанных с функцией Sleep.
Вызывая Sleep, поток добровольно отказывается от остатка выделенного ему кванта времени
Система прекращает выделять потоку процессорное время на период, пример но равный заданному, Все верно: если Вы укажете остановить поток на 100 мс, приблизительно на столько он и "заснет", хотя не исключено, что его сон про длится на несколько секунд или даже минут больше. Вспомните, Windows не является системой реального времени. Ваш поток может возобновиться в заданный момент, но это зависит от того, какая ситуация сложится в системе к тому времени.
Вы можете вызвать Sleep и передать в dwMilliseconds значение INFINITE, вообще запретив планировать поток. Но это не очень практично — куда лучше корректно завершить поток, освободив его стек и объект ядра.
Вы можете вызвать Sleep и передать в dwMilliseconds нулевое значение. Тогда Вы откажетесь от остатка своего кванта времени и заставите систему подключить к процессору другой поток. Однако система может снова запустить Ваш поток, если других планируемых потоков с тем же приоритетом нет.
BOOL SwitchToThread();
Функция SwitchToThread позволяет подключить к процессору другой поток (если он есть).
Вызов SwitchToThread аналогичен вызову Sleep с передачей в dwMilliseconds нулевого значения. Разница лишь в том, что SwitchToThread дает возможность выполнять потоки с более низким приоритетом, которым не хватает процессорного времени, а Sleep действует без оглядки на "голодающие" потоки.
Определение периодов выполнения потока
BOOL GetThreadTimes(
HANDLE hThread,
PFILETIME pftCreationTime,
PFILETIME pftExitTime,
PFILETIME pftKernelTime,
PFILETIME pftUserTime
);
С помощью этой функции можно определить время, необходимое для выполнения сложного алгоритма.
GetThreadTimes не годится для высокоточного измерения временных интервалов.
21. Критические секции и состязания. Семафоры, Мьютексы. Задача о читателях и писателях. Предотвращение критических ситуаций и средства синхронизации процессов
Возникновение гонок (состязаний)
Два процесса хотят получить доступ к общей памяти в одно и тоже время
Если процессу требуется вывести на печать файл, он помещает имя файла в специальный каталог спулера.
Другой процесс, “демон печати”, периодически проверяет наличие файлов, которые нужно печатать, печатает файл и удаляет его имя из каталога.
Представим, что каталог спулера состоит из большого числа сегментов, нумерованных 0,1, 2…, в каждом из которых может храниться имя файла. Также есть две совместно используемые переменные: out, указывающая на следующий файл для печати, и in, указывающая на следующий свободный сегмент.
Эти две переменные можно хранить в одном файле, доступном для всех процессов. Пусть в данный момент времени сегменты с 0 по 3 пусты (файлы уже напечатаны), а сегменты 4-6 заняты (файлы ждут печати).
Более или менее одновременно процессы A и B решают поставить файл в очередь на печать.
Возможна следующая ситуация:
Процесс A считывает значение (7) переменной in и сохраняет его в локальной переменной next_free_slot. После этого происходит прерывание по таймеру, и процессор переключается на процесс B. Процесс B, в свою очередь, считывает значение переменной in и сохраняет его (опять 7) в своей локальной переменной next_free_slot.
Теперь оба процесса считают, что следующий свободный сегмент – седьмой.
Процесс B сохраняет в каталоге спулера имя файла и заменяет значение in на 8, затем продолжает заниматься своими задачами, не связанными с печатью.
Наконец управление переходит к процессу A, и он начинает с того места, на котором остановился. Он обращается к переменной next_free_slot, считывает ее значение и записывает в седьмой сегмент имя файла (удаляя значение, записанное процессом B).
В результате файл процесса B не напечатается.
Критические секции
Важным понятием синхронизации потоков для решения проблемы состязаний является понятие «критической секции» программы.
Критическая секция – это часть программы, результат выполнения которой может непредсказуемо меняться, если переменные, относящиеся к этой части программы, изменяются другими потоками в то время, когда выполнение этой части еще не завершено.
Во всех потоках, работающих с критическими данными, должна быть определена критическая секция.
В разных потоках критическая секция состоит в общем случае из разных последовательностей команд.
Самый простой и в то же время самый неэффективный способ обеспечения взаимного исключения состоит в том, что ОС позволяет потоку запрещать любые прерывания на время его нахождения в критической секции. Однако этот способ практически не применяется, так как опасно доверять управление системой пользовательскому потоку – он может надолго занять процессор, а при крахе потока в критической секции крах потерпит вся система, потому что прерывания никогда не будут разрешены.
Условия исключения гонок
Два процесса не должны одновременно находиться в критической секции
В программе не должно быть предположений о скорости или количестве процессоров
Процесс вне критической секции не может блокировать другие процессы
Должна быть невозможна ситуация, когда процесс вечно ждет попадания в критическую секцию
Взаимное исключение с использованием критических секций
Семафоры
Дийкстра (Dijkstra) предложил использовать переменные, которые могут принимать целые неотрицательные значения. Такие переменные, используемые для синхронизации вычислительных процессов, получили название семафоров.
Семафор - неотрицательная целая переменная S >= 0, которая может изменяться и проверяться только посредством двух примитивов:
V(S): переменная S увеличивается на 1 единым неделимым действием. К переменной S нет доступа другим потокам во время выполнения этой операции.
P(S): уменьшение S на 1, если это возможно. Если S=0 и невозможно уменьшить S, оставаясь в области целых неотрицательных значений, то в этом случае поток, вызывающий операцию Р, ждет, пока это уменьшение станет возможным. Успешная проверка и уменьшение также являются неделимой операцией.
Иллюстрация работы семафора
Данный пример демонстрирует использование семафора для ограничения доступа потоков к объекту синхронизации на основании их количества.
Создание семафора
HANDLE CreateSemaphore(
LPSECURITY_ATTRIBUTE psa,
LONG lInitialCount,
LONG lMaximumCount,
LPCTRTR pszName);
HANDLE OpenSemaphore(
DWORD fdwAccess,
BOOL bInheritHandle,
LPCTSTR pszName);
Параметр lMaximumCount сообщает системе максимальное состояние семафора.
Управление семафором
Поток получает доступ к ресурсу, вызывая одну из Wait-функций и передавая ей описатель семафора, который охраняет этот ресурс Wait-функция проверяет у семафора счетчик текущего числа ресурсов если его значение больше 0 (семафор свободен), уменьшает значение этого счетчика на 1, и вызывающий поток остается планируемым.
BOOL ReleaseSemaphore(
HANDLE hSem,
LONG lReleaseCount,
PLONG plPreviousCount);
Если Wait-функция определяет, что счетчик текущего числа ресурсов равен 0 (семафор занят), система переводит вызывающий поток в состояние ожидания Когда другой поток увеличит значение этого счетчика, система вспомнит о ждущем потоке и снова начнет выделять ему процессорное время (а он, захватив ресурс, уменьшит значение счетчика на 1).
Поток увеличивает значение счетчика текущего числа ресурсов, вызывая функцию ReleaseSemaphore.
Она просто складывает величину lReleaseCount со значением счетчика текущего числа ресурсов. Обычно в параметре lReleaseCount передают 1.
Функция возвращает исходное значение счетчика ресурсов в *plPreviousCount.
Мьютексы
Иногда используется упрощенная версия семафора – мьютекс (mutex, mutual exclusion – взаимное исключение). Иногда называют еще двоичным семафором.
Мьютекс – переменная, которая может находиться в одном из двух состояний: блокированном или неблокированном.
Если процесс хочет войти в критическую секцию – он вызывает примитив блокировки мьютекса.
Если мьютекс не заблокирован, то запрос выполняется и процесс попадает в критическую секцию.
Использование мьютекса
В рассмотренном примере, для того чтобы исключить коллизии при работе с разделяемой областью памяти, будем считать, что запись в буфер и считывание из буфера являются критическими секциями. Взаимное исключение будем обеспечивать с помощью двоичного семафора (мьютекса) b. Оба потока после проверки доступности буферов должны выполнить проверку доступности критической секции.
Создание мьютекса
HANDLE CreateMutex(
LPSECURITY_ATTRIBUTES psa,
BOOL fInitialOwner,
LPCTSTR pszName);
HANDLE OpenMutex(
DWORD fdwAccess,
BOOL fInheritHandle,
LPCTSTR pszName);
Параметр fInitialOwner определяет начальное состояние мьютекса:
Если в нем передается FALSE (что обычно и бывает), объект-мьютекс не принадлежит ни одному из потоков и поэтому находится в свободном состоянии. При этом его идентификатор потока и счетчик рекурсии равны 0
Если же в нем передается TRUE, идентификатор потока, принадлежащий мьютексу, приравнивается идентификатору вызывающего потока, а счетчик рекурсии получает значение 1. Поскольку теперь идентификатор потока отличен от 0, мьютекс изначально находится в занятом состоянии.
Управление мьютексом
Поток получает доступ к разделяемому ресурсу, вызывая одну из Wait-функций и передавая ей описатель мьютекса, который охраняет этот ресурс. Wait-функция проверяет у мьютекса идентификатор потока, если сго значение не равно 0, мьютекс свободен, в ином случае оно принимает значение идентификатора вызывающего потока, и этот поток остается планируемым.
Если Wait-функция определяет, что у мьютекса идентификатор потока не равен 0 (мьютекс занят), вызывающий поток переходит в состояние ожидания. Система за поминает это и, когда идентификатор обнуляется, записывает в него идентификатор ждущего потока, а счетчику рекурсии присваивает значение 1, после чего ждущий поток вновь становится планируемым.
Когда ожидание мьютекса потоком успешно завершается, последний получает монопольный доступ к защищенному ресурсу. Все остальные потоки, пытающиеся обратиться к этому ресурсу, переходят в состояние ожидания. Когда поток, занимающий ресурс, заканчивает с ним работать, он должен освободить мьютекс вызовом функции ReleaseMutex.
BOOL ReleaseMutex (HANDLE hMutex);
Задача о читателях и писателях
Рассмотрим использование семафоров на классическом примере взаимодействия двух выполняющихся в режиме мультипрограммирования потоков, один из которых пишет данные в буферный пул, а другой считывает их из буферного пула.
Пусть буферный пул состоит из N буферов, каждый из которых может содержать одну запись. В общем случае поток-писатель и поток-читатель могут иметь различные скорости и обращаться к буферному пулу с переменой интенсивностью. В один период скорость записи может превышать скорость чтения, в другой – наоборот.
Для правильной совместной работы поток-писатель должен приостанавливаться, когда все буферы оказываются занятыми, и активизироваться при освобождении хотя бы одного буфера. Напротив, поток-читатель должен приостанавливаться, когда все буферы пусты, и активизироваться при появлении хотя бы одной записи.
Введем два семафора: е – число пустых буферов, и f – число заполненных буферов, причем в исходном состоянии е =N, a f =0. Тогда работа потоков с общим буферным пулом может быть описана следующим образом.
Таким образом, семафоры позволяют эффективно решать задачу синхронизации Доступа к ресурсным пулам, таким, например, как набор идентичных в функциональном назначении внешних устройств (модемов, принтеров, портов), или набор областей памяти одинаковой величины, или информационных структур. Во всех этих и подобных им случаях с помощью семафоров можно организовать доступ к разделяемым ресурсам сразу нескольких потоков.
22. Критические секции и состязания. Семафоры , атомарные операции, CRITICAL_SECTION. Задача о читателях и писателях. Предотвращение критических ситуаций и средства синхронизации процессов
Возникновение гонок (состязаний)
Два процесса хотят получить доступ к общей памяти в одно и тоже время
Если процессу требуется вывести на печать файл, он помещает имя файла в специальный каталог спулера.
Другой процесс, “демон печати”, периодически проверяет наличие файлов, которые нужно печатать, печатает файл и удаляет его имя из каталога.
Представим, что каталог спулера состоит из большого числа сегментов, нумерованных 0,1, 2…, в каждом из которых может храниться имя файла. Также есть две совместно используемые переменные: out, указывающая на следующий файл для печати, и in, указывающая на следующий свободный сегмент.
Эти две переменные можно хранить в одном файле, доступном для всех процессов. Пусть в данный момент времени сегменты с 0 по 3 пусты (файлы уже напечатаны), а сегменты 4-6 заняты (файлы ждут печати).
Более или менее одновременно процессы A и B решают поставить файл в очередь на печать.
Возможна следующая ситуация:
Процесс A считывает значение (7) переменной in и сохраняет его в локальной переменной next_free_slot. После этого происходит прерывание по таймеру, и процессор переключается на процесс B. Процесс B, в свою очередь, считывает значение переменной in и сохраняет его (опять 7) в своей локальной переменной next_free_slot.
Теперь оба процесса считают, что следующий свободный сегмент – седьмой.
Процесс B сохраняет в каталоге спулера имя файла и заменяет значение in на 8, затем продолжает заниматься своими задачами, не связанными с печатью.
Наконец управление переходит к процессу A, и он начинает с того места, на котором остановился. Он обращается к переменной next_free_slot, считывает ее значение и записывает в седьмой сегмент имя файла (удаляя значение, записанное процессом B).
В результате файл процесса B не напечатается.