
- •Доказательства роли днк в передаче наследственной информации. Опыты Гриффитса , Эвери , Мак-Леода и Мак-Карти. Трансформация.
- •Доказательства роли днк в передаче наследственной информации. Опыты Херши и Чейз.
- •Структура нуклеиновых кислот. Нуклеотиды, их разновидности.
- •Пространственная конфигурация молекулы днк. Модель Уотсона и Крика. В и z формы днк.
- •5. Способы репликации днк: консервативный, полуконсервативный, дисперсионный. Опыты Мезельсон и Сталь.
- •6. Направление репликации днк. Образование репликативной вилки. Точка ori.
- •7. Инициация репликации. Факторы инициации. Ферменты репликации.
- •8. Элонгация репликации. Днк - топоизомераза, днк - затравка, днк - полимераза.
- •9. Элонгация репликации. Лидирующая и отстающая цепи. Фрагменты Оказаки. Рнк - затравка.
- •10. Транскрипция днк у прокариот. Кодирующая и антикодирующая цепи днк.
- •12. Инициация транскрипции. Промотор, стартовая точка.
- •22. Гистоны. Структура нуклеосом.
- •23. Уровни упаковки хромосом эукариот. Конденсация хроматина.
- •24. Приготовление хромосомных препаратов. Использование колхицина. Гипотония, фиксация и окрашивание.
- •26. Дифференциальное окрашивание хромосом, применение этого метода.
- •27. Классификация мутаций по изменению силы и направленности действия мутантного аллеля.
- •28. Геномные мутации. Полиплоидии и анеуплоидии, причины их возникновения.
- •29. Структурные перестройки хромосом: виды, механизмы образования. Делеции, дупликации, инверсии, инсерции, транслокации.
- •30. Генные мутации: транзиции, трансверсии, сдвиг рамки считывания, нонсенс -, миссенс - и сейсменс - мутации.
- •39. Хромосомные болезни, обусловленные аномалиями половых хромосом: синдром Шерешевского - Тернера, синдром Кляйнфельтера, полисомии по х и у- хромосомам.
- •46.Пренатальная диагностика. Методы: уз, амниоцентез, биопсия ворсин хориона. Показания к пренатальной диагностике.
- •47.Близнецовый метод. Типы близнецов. Диагностика зиготности близнецов. Конкордантность и дискордантность. Соотношение наследственности и среды в формировании признака.
- •Картирование с использованием транслокаций и делеций
- •Картирование генов у человека: метод днк-зондов.
- •61. Взаимодействие неаллельных генов. Полимерия, ее виды.
- •Теория Ламарка
- •79. Предмет антропологии, ее задачи и методы.
- •79. Предмет антропологии, ее задачи и методы.
- •80. Конституциональные варианты человека в норме по Сиго.
- •81. Конституциональные варианты человека в норме по э.Кречмеру.
- •82. Конституциональные варианты человека в норме по в.Н.Шевкуненко и а.М.Геселевич.
- •83. Конституциональные варианты человека в норме по Шелдону.
- •84. Доказательства животного происхождения человека.
- •85. Место человека в системе классификации в системе животного мира. Морфо-физиологические отличия человека от приматов.
- •86. Палеонтологические данные о происхождении приматов и человека.
- •87. Древнейшие люди - архантропы.
- •88. Древние люди - палеоантропы.
- •89. Неоантропы.
- •90. Расы - как выражение генетического полиморфизма человечества.
- •Компоненты биогеоценоза.
- •98. Адаптивные экологические типы человека. Тропический адаптивный тип. Горный адаптивный тип.
23. Уровни упаковки хромосом эукариот. Конденсация хроматина.
Всего на сегодняшний день известно три уровня упаковки ДНК в составе хроматина:
1. Нуклеосомный уровень.
2. Нити хроматина - уровень соленоида, осуществляемый за счет закручивания нуклеофиламента в 30-нм фибриллу. Нити хроматина представляют собой молекулу ДНК, упакованную в форме соленоида, содержащего нуклеомеры
3. Уровень, образуемый петлями (loops) ДНК. В интерфазных ядрах эукариот нити хроматина организованы в виде топологически независимых петель, длина которых в среднем составляет 50-100 т.п.о. Такой способ пространственной укладки нитей хроматина рассматривается как следующий уровень конденсации хроматина у эукариот, а сами петли получили название хромомеров.
Хроматин конденсируется по периферии, под мембраной ядра, при этом образуются четко очерченные плотные массы различной формы и размеров. Ядро же может разрываться на два или несколько фрагментов. Механизм конденсации хроматина изучен достаточно хорошо. Он обусловлен расщеплением ядерной ДНК в местах, связывающих отдельные нуклеосомы, что приводит к развитию большого количества фрагментов, в которых число пар оснований делится на 180- 200. При электрофорезе фрагменты дают характерную картину лестницы. Эта картина отличается от таковой при некрозе клеток, где длина фрагментов ДНК варьирует. Фрагментация ДНК в нуклеосомах происходит под действием кальций чувствительной эндонуклеазы. Эндонуклеаза в некоторых клетках находится постоянно (например, в тимоцитах), где она активируется появлением в цитоплазме свободного кальция, а в других клетках синтезируется перед началом апоптоза. Однако еще не установлено, каким образом после расщепления ДНК эндонуклеазой происходи т конденсация хроматина.
24. Приготовление хромосомных препаратов. Использование колхицина. Гипотония, фиксация и окрашивание.
. В зависимости от степени пролиферативной активности клеток разных тканей in vivo и in vitro различают прямые и непрямые методы получения препаратов хромосом.
1) Прямые методы используются при исследовании тканей, обладающих высокой митотической активностью (костный мозг, хорион и плацента, клетки лимфатических узлов, тканиэмбриона на ранней стадии развития). Препараты хромосом готовятся непосредственно из свежеполученного материала после специальной обработки.
2) Непрямые методы включают получение препаратов хромосом из любой ткани после ее предварительного культивирования в течение различного периода времени.
Существует множество модификаций прямого и непрямого методов приготовления хромосомных препаратов, однако основные этапы получения метафазных пластинок остаютсянеизменными:
1. Использование колхицина (колцемида) - ингибитора образования митотического веретена, который останавливает деление клеток на стадии метафазы.
2. Гипотонический шок с использованием растворов солей калия или натрия, которые вследствие разницы осмотического давления внутри и снаружи клеток вызывают их набуханиеи разрыв межхромосомных связей. Такая процедура приводит к отделению хромосом друг от друга, способствуя более сильному их разбросу в метафазных пластинках.
3. Фиксация клеток с использованием ледяной уксусной кислоты и этанола (метанола) в соотношении 3:1 (фиксатор Карнуа), что способствует сохранению структуры хромосом.
4. Раскапывание суспензии клеток на предметные стекла.
5. Окрашивание хромосомных препаратов.
25. Характеристика хромосомного набора человека. Денверовская номенклатура.
Хромосомный набор или кариотип человека включает 46 хромосом - 22 пары аутосом и 1 пару половых хромосом (XX
- у лиц женского пола и XY - мужского). В основу Денверской классификации хромосом была положена их морфологическая характеристика: размер, форма и положение первичной перетяжки - центромеры. Согласно данной номенклатуре хромосомы нумеруются от 1 до 23 по мере убывания их длины: с 1 по 22 - аутосомы, а 23 пара - половые хромосомы. Самые крупные хромосомы человека, имеющие первые номера, в среднем 5 раз длиннее самых мелких - 21 и 22 хромосом. В соответствии с положением центромеры хромосомы принято делить на 3 группы: метацентрические (центромера расположена в середине хромосомы), субметацентрические (центромера смещена от центра хромосомы) и акроцентрические (центромера расположена в дистальной части хромосомы).
Все аутосомы согласно Денверской классификации были подразделены на 7 групп - от А до G. Группа А (хромосомы 1-3) - большие метацентрические хромосомы. Группа В (хромосомы 4 и 5) - включает большие субметацентрические хромосомы. Группа С (хромосомы 6-12) - среднего размера субметацентрические хромосомы. Группа D (хромосомы 13-15) - большие акроцентрические хромосомы. Группа Е (хромосомы 16-18) - включает короткие субметацентрические хромосомы. Группа F - (хромосомы 19 и 20) - маленькие ме-тацентрические хромосомы. Группа G - (хромосомы 21 и 22) - включает малые акроцентрические хромосомы. Половая Х-хромосома по длине и центромерному индексу (соотношению между длиной короткого и длинного плечей хромосомы) близка к хромосомам группы С, а Y-хромосома по величине и морфологии (при обычной окраске) близка к хромосомам группы G.