Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОТВЕТЫ на БИОЛОГИЮ 2012.doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
36.53 Mб
Скачать

6. Направление репликации днк. Образование репликативной вилки. Точка ori.

Ori — это последовательность ДНК, которая является точкой начала репликации.. ДНК – полимераза в репликоне может двигаться вдоль материнской нити только в направлении от конца 3' к концу 5'. Поэтому сборка дочерних нитей ДНК идет антипараллельно – в противоположных направлениях. Процесс во всех репликонах проходит одновременно. Участок репликации называется репликационной вилкой. Начиная с точки инициации (ori), репликация осуществляется в ограниченной зоне, перемещающейся вдоль исходной спирали ДНК. Эта активная зона репликации(репликативной вилки) может двигаться в обоих направлениях. При однонаправленной репликации вдоль ДНК движется одна репликационная вилка. При двунаправленной репликации от точки инициации в противоположных направлениях расходятся две репликационные вилки; скорости их движения могут различаться. При репликации ДНК бактерии и млекопитающих скорость роста дочерней цепи составляет соотв. 500 и 50 нуклеотидов в 1 с; у растений эта величина не превышает 20 нуклеотидов в 1 с. Движение двух вилок в противоположных направлениях создает петлю, которая имеет вид "пузыря" или "глаза". Продолжающаяся репликация расширяет "глаз" до тех пор, пока он не включит в себя весь репликон.

7. Инициация репликации. Факторы инициации. Ферменты репликации.

Инициацию репликации регулируют специфические сигнальные белковые молекулы - факторы роста. Факторы роста связываются рецепторами мембран клеток, которые передают сигнал, побуждающий клетку к началу репликации

Синтез новых одноцепочечных молекул ДНК может произойти только при расхождении родительских цепей. В определённом сайте (точка начала репликации) происходит локальная денатурация ДНК, цепи расходятся и образуются две репликативные вилки, движущиеся в противоположных направлениях.

В образовании репликативной вилки принимает участие ряд белков и ферментов. Так, семейство ДНК-топоизомераз (I, II и III), обладая нуклеазной активностью, участвует в регуляции суперспирализации ДНК. Например, ДНК-топоизомераза I разрывает фосфоэфирную связь в одной из цепей двойной спирали и ковалентно присоединяется к 5'-концу в точке разрыва (рис. 4-15). По окончании формирования репликативной вилки фермент ликвидирует разрыв в цепи и отделяется от ДНК.

Разрыв водородных связей в двухцепочечной молекуле ДНК осуществляет ДНК-хеликаза.Фермент ДНК-хеликаза использует энергию АТФ для расплетения двойной спирали ДНК.

В результате происходит раскручивание участка суперспирализованной молекулы ДНК. В поддержании этого участка ДНК в раскрученном состоянии участвуют SSB-белки (от англ, single strand binding proteins, т.е. белки, связывающиеся с одноцепочечными нитями ДНК). SSB-белки, не закрывая азотистых оснований, связываются с одноцепочечной ДНК по всей длине разделившихся цепей и таким образом предотвращают их комплементарное скручивание и образование "шпилек". Они обладают большим сродством к одноцепочечным участкам ДНК, независимо от первичной структуры цепей.

Топоизомераза

Сбрасывание супервитков ДНК

 

Белок, раскручивающий двой-ную спираль (АТФ-зависи-мый) 

  Плавление ДНК

Белок, дестабилизирующий двойную спираль

Стабилизация однонитевых разрывов

 

РНК-полимераза (праймаза)

Инициация синтеза ДНК

 

ДНК-полимераза II

Синтез ДНК, корректорские функции

 

ДНК-полимераза III

Удаление РНК затравки, заполнение одно-нитевых участков, корректорские функции

 

 

ДНК-лигаза

Ковалентное соединение фрагментов Оказаки