
- •1 Экология как наука, основные этапы её развития.
- •2 Методы экологических исследований; изотопные методы в экологии.
- •3 Основные понятия теории систем, важнейшие особенности экологических систем.
- •4 Особенности термодинамики экологических систем
- •5 Экологические факторы среды, классификация видов по отношению к экологическим факторам.
- •6 Лимитирующие факторы, закон толерантности Шелфорда
- •7 Температура как фактор распространения живых организмов в Биосфере
- •8 Активная реакция среды как экологический фактор, ее влияние на видовой состав экологических систем
- •9 Соленость как экологический фактор, ее влияние на видовой состав экологических систем.
- •10 Свет как экологический фактор, его влияние на распространение и жизнедеятельность организмов
- •11. Концентрация кислорода как экологический фактор, ее влияние на видовой состав и распространение живых организмов.
- •12. Влияние температуры на скорость биологических процессов. Коэффициент Вант-Гоффа.
- •13. Влияние температуры на скорость биологических процессов. Формула Таути, уравнение Вант-Гоффа – Аррениуса.
- •14. Влияние температуры на скорость развития пойкилотермных животных. Правило суммы эффективных температур.
- •16. Скорость и интенсивность дыхания у животных, их зависимость массы тела. Уровни метаболизма в разных таксонах.
- •17. Активный обмен у животных и методы его определения.
- •18. Зависимость интенсивность дыхания у пойкилотермных и гомойотермных животных от температуры.
- •19. Количественные закономерности питания организмов. Зависимость рациона от массы тела и концентрации корма в среде.
- •20. Энергетический баланс и экологическая эффективность роста организмов. Поддерживающий рацион.
- •Рождаемость в популяциях и скорость их размножения. Удельная скорость рождаемости.
- •Абсолютная плодовитость организмов, ее зависимость от массы тела и факторов среды. Изменения абсолютной плодовитости в разных таксонах.
- •Относительная плодовитость организмов и пределы ее изменения,
- •Смертность в популяциях и ее типы. Удельная скорость смертности.
- •Основные типы роста численности популяций. Емкость среды.
- •37.Сопряженные изменения рождаемости и смертности в популяциях. Принцип Олли.
- •38.Демографические показатели популяций, жизненные таблицы.
- •39.Многолетняя динамика численности популяций и методы ее оценки.
- •40.Межпопуляционные взаимоотношения и их классификация. Нейтрализм как форма взаимодействия.
- •64Концентрация токсичных веществ в трофических цепях.
- •65Концепция r/k-стратегии жизненных циклов.
- •66Концепция стратегии жизненных циклов Раменского – Грайма.
- •67Репродуктивное усилие популяций с разной стратегией жизненных циклов.
- •68 Биосфера Земли, ее строение и основные функции.
- •69Биосфера как экологическая система, ее основные компоненты и механизмы устойчивости.
- •70Границы Биосферы и распространение в ней живых организмов.
- •71. Роль Биосферы в круговороте кислорода и углерода.
- •72. Роль биосферы в круговороте азота.
- •73. Биологическая продуктивность Биосферы и ее использование человеком.
- •74. Основные факторы и механизмы стабильности биосферы Земли
- •75. Экологическая характеристика биома саванны.
- •76. Экологическая характеристика биома пустынь.
- •77. Экологическая характеристика биомов широколиственных лесов.
- •78. Экологическая характеристика биома степей.
- •79. Экологическая характеристика биомов тундры
- •80. Экологическая характеристика биома тайги.
- •80. Экологическая характеристика биома тайги.
- •81. Экологическая характеристика биома тропических лесов.
- •82. Экологическая характеристика биомов открытого океана
- •83. Экологическая характеристика биома шельфовых зон.
- •84. Экологическая характеристика биомов коралловых рифов.
- •85. Экологическая характеристика биома гидротермальных источников.
- •86. Экологическая характеристика биомов, находящихся на территории Беларуси.
- •87. Основные этапы эволюции Биосферы в гадейскую эру.
- •89. Основные этапы эволюции Биосферы в протерозойскую эру.
- •90. Основные этапы эволюции Биосферы в палеозойскую эру.
- •92 Основные этапы эволюции Биосферы в кайнозойскую эру.
- •93 Видовая структура флоры и фауны. Космополиты, эндемики и реликты
- •95 Связь между видовым разнообразием и устойчивостью экосистемы.
- •96 Основы островной зоогеографии.
- •97 Информационные индексы разнообразия и их значение в биомониторинге состояния окружающей среды.
- •98 Типы доминирования в биоценозах межвидовые взаимоотношения в биоценозах
- •99 Экологическая сукцессия и ее типы. Экологический климакс
4 Особенности термодинамики экологических систем
Функционирование любой системы происходит за счет обмена энергией между ней и окружающей средой и превращений энергии внутри системы. теплота является одним из видов энергии. другие виды энергии(механическая, электрическая) можно полностью превратить в тепловую энергию и величину механической работы можно оценить по количеству выделенной тепловой энергии. наука о закономерностях превращениях энергии в системах получила название термодинамика. Большинство систем имеет более или менее четкие границы, отделяющие их от внешней среды. Через эти границы происходит обмен вещества и энергии между системой и средой. Система, которая не обменивается со средой ни веществом, ни энергией, называется изолированной Система, которая обменивается с окружающей средой только энергией, называется замкнутой. Система, которая обменивается со средой только веществом, называется адиабатической. Все биологические системы от органелл и до Биосферы, в том числе– экологические, является открытыми. 1 з. термодинамики «Энергия может переходить из одной формы в другую, но не исчезает и не создается вновь» - закон охранения энергии. Однако он ничего не говорит о том, какая часть энергии, переданной системе, может быть превращена в работу. 2 з. термодинамики накладывает ограничения на эффективность превращения энергии в работу. «Теплота не может самопроизвольно переходить от тела с низкой температурой к телу с высокой температурой». Для понимания сущности второго закона термодинамики необходимо вначале рассмотреть принципиальное различие между обратимыми и необратимыми процессами. Необратимые процессы, называемые также самопроизвольными, осуществляются за счет запасов энергии, накопленной в системе. Горячее тело будет самопроизвольно остывать, пока его температура не сравняется с температурой окружающей среды. Однако никакое тело не может самопроизвольно нагреться. Для этого ему нужно каким-либо образом придать дополнительную энергию извне. В этой связи введено понятие, является постоянной величиной: ΔS= Qобр /T = const. Энтропия– это мера неупорядоченности системы, или количество энергии, недоступной для использования и превращения в другие виды энергии. Чем выше упорядоченность системы, тем ниже ее энтропия и наоборот. Она же может быть и мерой упорядоченности системы: чем выше энтропия системы, тем ниже ее упорядоченность и наоборот. Второй закон указывает, что не все формы энергии эквивалентны, поскольку они обладают разным количеством энтропии:. любой вид энергии состоит из двух частей– свободной энергии, или энтальпии, которая может самопроизвольно превратиться в другой вид энергии, и энтропии. тепловая энергия представляет низшую, наиболее «деградированную» форму энергии. Ни в какую другую форму энергии она самопроизвольно превратиться не может. в замкнутых системах при любых процессах трансформации энергии из одной формы в другую, определенная ее часть рассеивается в виде тепла. Второй закон термодинамики и загрязнение окружающей среды. Согласно второму закону термодинамики, при обратимых процессах суммарная энтропия системы и окружающей среды остается неизменной. При необратимых процессах суммарная энтропия системы и окружающей среды возрастает. В состоянии равновесия системы со средой энтропия системы максимальна. Увеличение энтропии в необратимых процессах выше, чем в обратимых. Поэтому восстановление исходного состояния системы требует большей затраты энергии, чем ее было первоначально расходовано в необратимом процессе. Загрязнение окружающей среды является самопроизвольным необратимым процессом, сопровождающимся ростом ее энтропии. Мероприятия по очистке среды приводят к снижению ее энтропии, однако они требуют затрат большего количества энергии, чем образовалось в процессе загрязнения среды.