
- •1 Экология как наука, основные этапы её развития.
- •2 Методы экологических исследований; изотопные методы в экологии.
- •3 Основные понятия теории систем, важнейшие особенности экологических систем.
- •4 Особенности термодинамики экологических систем
- •5 Экологические факторы среды, классификация видов по отношению к экологическим факторам.
- •6 Лимитирующие факторы, закон толерантности Шелфорда
- •7 Температура как фактор распространения живых организмов в Биосфере
- •8 Активная реакция среды как экологический фактор, ее влияние на видовой состав экологических систем
- •9 Соленость как экологический фактор, ее влияние на видовой состав экологических систем.
- •10 Свет как экологический фактор, его влияние на распространение и жизнедеятельность организмов
- •11. Концентрация кислорода как экологический фактор, ее влияние на видовой состав и распространение живых организмов.
- •12. Влияние температуры на скорость биологических процессов. Коэффициент Вант-Гоффа.
- •13. Влияние температуры на скорость биологических процессов. Формула Таути, уравнение Вант-Гоффа – Аррениуса.
- •14. Влияние температуры на скорость развития пойкилотермных животных. Правило суммы эффективных температур.
- •16. Скорость и интенсивность дыхания у животных, их зависимость массы тела. Уровни метаболизма в разных таксонах.
- •17. Активный обмен у животных и методы его определения.
- •18. Зависимость интенсивность дыхания у пойкилотермных и гомойотермных животных от температуры.
- •19. Количественные закономерности питания организмов. Зависимость рациона от массы тела и концентрации корма в среде.
- •20. Энергетический баланс и экологическая эффективность роста организмов. Поддерживающий рацион.
- •Рождаемость в популяциях и скорость их размножения. Удельная скорость рождаемости.
- •Абсолютная плодовитость организмов, ее зависимость от массы тела и факторов среды. Изменения абсолютной плодовитости в разных таксонах.
- •Относительная плодовитость организмов и пределы ее изменения,
- •Смертность в популяциях и ее типы. Удельная скорость смертности.
- •Основные типы роста численности популяций. Емкость среды.
- •37.Сопряженные изменения рождаемости и смертности в популяциях. Принцип Олли.
- •38.Демографические показатели популяций, жизненные таблицы.
- •39.Многолетняя динамика численности популяций и методы ее оценки.
- •40.Межпопуляционные взаимоотношения и их классификация. Нейтрализм как форма взаимодействия.
- •64Концентрация токсичных веществ в трофических цепях.
- •65Концепция r/k-стратегии жизненных циклов.
- •66Концепция стратегии жизненных циклов Раменского – Грайма.
- •67Репродуктивное усилие популяций с разной стратегией жизненных циклов.
- •68 Биосфера Земли, ее строение и основные функции.
- •69Биосфера как экологическая система, ее основные компоненты и механизмы устойчивости.
- •70Границы Биосферы и распространение в ней живых организмов.
- •71. Роль Биосферы в круговороте кислорода и углерода.
- •72. Роль биосферы в круговороте азота.
- •73. Биологическая продуктивность Биосферы и ее использование человеком.
- •74. Основные факторы и механизмы стабильности биосферы Земли
- •75. Экологическая характеристика биома саванны.
- •76. Экологическая характеристика биома пустынь.
- •77. Экологическая характеристика биомов широколиственных лесов.
- •78. Экологическая характеристика биома степей.
- •79. Экологическая характеристика биомов тундры
- •80. Экологическая характеристика биома тайги.
- •80. Экологическая характеристика биома тайги.
- •81. Экологическая характеристика биома тропических лесов.
- •82. Экологическая характеристика биомов открытого океана
- •83. Экологическая характеристика биома шельфовых зон.
- •84. Экологическая характеристика биомов коралловых рифов.
- •85. Экологическая характеристика биома гидротермальных источников.
- •86. Экологическая характеристика биомов, находящихся на территории Беларуси.
- •87. Основные этапы эволюции Биосферы в гадейскую эру.
- •89. Основные этапы эволюции Биосферы в протерозойскую эру.
- •90. Основные этапы эволюции Биосферы в палеозойскую эру.
- •92 Основные этапы эволюции Биосферы в кайнозойскую эру.
- •93 Видовая структура флоры и фауны. Космополиты, эндемики и реликты
- •95 Связь между видовым разнообразием и устойчивостью экосистемы.
- •96 Основы островной зоогеографии.
- •97 Информационные индексы разнообразия и их значение в биомониторинге состояния окружающей среды.
- •98 Типы доминирования в биоценозах межвидовые взаимоотношения в биоценозах
- •99 Экологическая сукцессия и ее типы. Экологический климакс
74. Основные факторы и механизмы стабильности биосферы Земли
Добыча морепродуктов и нетрадиционных продуктов питания. Ранее считалось, что Мировой океан невероятно продуктивен, а его пищевые ресурсы неисчерпаемы, поэтому он сможет прокормить растущее человечество. Однако выяснилось, что продуктивность океанов и морей (за исключением шельфовых зон и коралловых рифов) сравнима с продуктивностью пустынь. Ежегодный прирост рыбы и морепродуктов (киты, кальмары, ракообразные) в океанах и морях оценивается в 200 миллионов тонн, а их ежегодная добыча составляет 60 – 70 миллионов тонн. Считается, что эта величина близка к критической, а ее превышение подорвет запасы рыбы, как это произошло с китами. Отсюда введение квот на добычу рыбы и китов, установление 200- мильных экономических зон, «тресковые войны» и т.д. Однако возможно
увеличить добычу моллюсков, криля, до уровня, не подрывающего их запасов. Можно использовать запасы крупных морских водорослей – агара, ламинарии и т.д. На суше использовать такие нетрадиционный источники питания, как «кустарниковое мясо» (в Африке, мелкие грызуны, насекомоядные), лягушек, улиток. Часть их можно выращивать в культуре на остатках корма. Разведение организмов более низких трофических уровней. Сейчас достаточно широко используется выращивание одноклеточных водорослей (хлорелла) и бактерий на органических субстратах на корм скоту. Возможно расширение разведения беспозвоночных (устрицы, мидии, растительноядные рыбы), использующих энергию первого трофического уровня. У них соотношением между энергией прироста массы тела и тратами на дыхание составляет не 1:10, как у млекопитающих и птиц, а 1:3 – 1:4. Прирост массы тела у них на единицу потребленной пищи у них в 2-3 раза выше, чем у млекопитающих, при этом, а энергия, заключенная в автотрофных организмах они используют без промежуточных звеньев.
Снижение численности домашнего скота, замена животных белков растительными. Например, в сое содержится до 25% белков. Ее в США широко используют для изготовления «растительного мяса», которое ароматизируют специальными добавками, придающими ему вкус настоящего мяса.
Методы генной инженерии. Внедрение генов, ответственных за фиксацию азота в неазотфиксирующие бактерии и даже в геном сельскохозяйственных культур. Механизм фиксации азота у разных видов нитрификаторов (бактерии, сине-зеленые водоросли) контролирует небольшая группа компактно расположенных генов (nif-система). Ее структура у разных видов практически одинакова. Некоторые вирусы способны отрывать nif- систему от молекулы ДНК азотфиксирующей бактерии и присоединять ее к ДНК других видов бактерий (горизонтальный перенос генов). Предполагается, что эта система возникла сравнительно недавно у одного какого-нибудь вида бактерий, а затем посредством бактерий была перенесена в другие виды бактерий и сине-зеленых водорослей. Таким способом в эксперименте nif-система была включена в молекулу ДНК кишечной палочки человека, которая приобрела способность фиксировать азот. Изучаются возможности включения nif-системы даже в геном культурных растений, однако эта проблема еще далека от разрешения. Решение этих проблем позволило бы снизить энергоемкое производство азотных удобрений. Однако методы генной инженерии и получение трансгенных видов живых организмов вызывает серьезные опасения в обществе, поскольку неизвестно, какое влияние чужеродные гены могут оказать на весь генотип и фенотип организма. Хотя достоверных фактов вредного воздействия таких организмов на человека не выявлено, основания для опасения остаются. Более простым способом и безопасным способом, вероятно, является выведение штаммов азотфиксирующих бактерий, способных поселяться на корнях хозяйственно ценных культур – злаковых, пасленовых, крестоцветных. Изучаются возможности снижения так называемого фотодыхания и увеличения энергетического КПД фотосинтеза растений с 1-2% хотя бы до 5%. Это что могло 3-5 кратный прирост первичной продукции Биосферы и, казалось бы, решить многие проблемы человечества. Однако образовавшиеся излишки органического вещества неизбежно будут потребляться гетеротрофными организмами и (или) разлагаться редуцентами. В конечном итоге вся энергия химических связей, находящаяся в органических продуктах фотосинтеза, будет преобразована в тепловую энергию. Это приведет к разогреву атмосферы, которое особенно заметно будет ощущаться в тропиках. Считается, что нынешний уровень первичной продукции в Биосфере является оптимальным с точки зрения сохранения теплового баланса приземных слоев атмосферы и создания необходимых пищевых ресурсов для ее населения.