
- •Химическая термодинамика. Элементы термодинамики и предмет термодинамики
- •Основные понятия термодинамики и возможность самопроизвольного протекания химической реакции. Энторопия.
- •Функция состояния. Уравнения Гиббса и Гельмгольца
- •Тепловые эффекты химической реакции и их расчеты. Закон Гесса и следствие из него
- •Химическая кинетика. Основные понятия. Скорость химической реакции. Выражение для скорости химической реакции
- •7. Молекулярность и порядок химической реакции. Физический смысл константы скорости реакции первого порядка
- •8.Классификация химических реакций.
- •9. Элементы стадии цепных реакций и их приложений к реакции горения в двигателях внутреннего сгорания
- •10. Химическое равновесие. Сдвиг химического равновесия. Принцип Лешателье
- •11.Влиание различных факторов на скорость химической реакции. Уравнение Вант-Гоффа
- •13. Квантовые числа и их физический смысл.
- •14. Правила заполнения электронных орбиталей. Принципы Паули и Гунда
- •15. Правила заполнения электронных орбиталей. 1-ое и 2-е правила Ключевского
- •16.Теория строения атома. Волновое уравнение Шредингера и его физический смысл. Квантованность энергии.
- •17. Графическое изображение электронов в атоме
- •18. Окислительно- восстановительные реакции. Окисление и восстановление. Важнейшие окислители и восстановители
- •19. Основные типы окислительно- востановительных реакций
- •20. Электрохимия . Возникновение электронного потенциала. Уравнение .Нернста
- •21Гальввнические элементы и эдс цепи.
- •23. Явление электролиза и его законы.
- •26. Электролическая диссациация. Константа и степень диссациации и связь между ними. Сильные и слабые электролиты
- •32.Всокомолекулярные соединения. Классификация полимеров
- •33.Особенности высокомолекулярных соединений
32.Всокомолекулярные соединения. Классификация полимеров
Высокомолекулярные соединения
ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ (полимеры) - характеризуются мол. массой от неск. тысяч до неск. (иногда многих) миллионов. В состав молекул высокомолекулярных соединений (макромолекул) входят тысячи атомов, соединенных хим. связями. Любые атом или группа атомов, входящие в состав цепи полимера или олигомера, наз. составным звеном. Наим. составное звено, повторением к-рого м. б. описано строение регулярного полимера, наз. составным повторяющимся звеном. Составное звено, к-рое образуется из одной молекулы мономера при полимеризации, наз. мономерным звеном (ранее иногда наз. элементарным звеном). Напр., в полиэтилене [—СН2СН2—]n повторяющееся составное звено - СН2, мономерное -СН2СН2. Название линейного полимера образуют прибавлением приставки "поли" (в случае неорганич. полимеров -"катена-поли"): а) к названию составного повторяющегося звена, заключенному в скобки (систематич. названия); б) к названию мономера, из к-рого получен полимер (полусистематич. названия, к-рые ИЮПАК рекомендует использовать для обозначения наиб. часто применяемых полимеров). Классификация. По происхождению высокомолекулярные соединения делят на природные, или биополимеры (напр., белки, нуклеиновые кислоты, полисахариды), и синтетические (напр., полиэтилен, полистирол, феноло-алъдегидные смолы). В зависимости от расположения в макромолекуле атомов и атомных групп различают: 1) линейные высокомолекулярные соединения, макромолекулы к-рых представляют собой открытую, линейную, цепь (напр., каучук натуральный)или вытянутую в линию последовательность циклов (напр., целлюлоза); 2)разветвленные высокомолекулярные соединения, макромолекулы к-рых имеют форму линейной цепи с ответвлениями (напр., амилопектин); 3) сетчатые высокомолекулярные соединения - трехмерные сетки, образованные отрезками высокомолекулярных соединений цепного строения (напр., отвержденные феноло-альдегидные смолы, вулканизов. каучук).
33.Особенности высокомолекулярных соединений
До недавнего времени растворы высокомолекулярных соединений (ВМС) не совсем правильно относили к золям. Многочисленные исследования свойств растворов ВМС показали, что эти системы по многим свойствам отличаются от золей и имеют ряд специфических особенностей. К ВМС относятся: натуральный и искусственный шелк, шерсть, хлопок, синтетические смолы, пластические массы, натуральный и синтетический каучуки, синтетические волокна (капрон, нитрон, лавсан и др.), белковые вещества, крахмал, целлюлоза и ее производные и многие другие. Высокомолекулярные соединения - вещества, обладающие молекулярной массой от нескольких тысяч до нескольких миллионов атомных единиц масс. Такие огромные по размеру молекулы называют макромолекулами. У некоторых ВМС макромолекулы способны диссоциировать с образованием макроионов. Примером таких ВМС являются амфотерные полимерные электролиты, в частности водные растворы белков. Имея в своем составе основные (- NH2) и кислотные (- СООН) функциональные группы, белковые молекулы проявляют амфотерные свойства. В зависимости от рН они диссоциируют по кислотному типу, отщепляя ионы Н+ и образуя макроанионы (при рН > 7), или же посылают в раствор ионы ОН- и сложные макрокатионы (при рН<7). По некоторым признакам растворы ВМС сходны с золями. Размер частиц в растворах ВМС соответствует коллоидной степени дисперсности (10-6-10-7 см). Частицы этих растворов, как и золей, задерживаются полупроницаемыми перегородками при диализе, обладают сравнительно небольшой скоростью диффузии, способны под влиянием внешних факторов коагулировать. Все это послужило основанием причислять такие растворы к золям. Однако исследованиями В. А. Каргина и С. М. Липатова было показано, что растворы ВМС представляют собой гомогенные истинные растворы, содержащие отдельные макромолекулы или макроионы растворенных веществ. Отличительной особенностью растворов ВМС (по сравнению с золями) является способность частиц взаимодействовать с молекулами растворителя, что выражается термином лиофильность. Вследствие этого такие растворы образуются самопроизвольно путем неограниченного набухания, переходящего в обычное растворение.
34. Получение высокомолекулярных соединений полимеризацей и поликонденсацией.
Высокомолекулярные соединения (полимеры), характеризуются молекулярной массой от нескольких тысяч до нескольких (иногда многих) миллионов. В состав молекул высокомолекулярных соединений (макромолекул)входят тысячи атомов, соединенных химическими связями. Любые атом или группа атомов, входящие в состав цепи полимера или олигомера, называются составным звеном. Наименьшее составное звено, повторением которого может быть описано строение регулярного (см. ниже) полимера, называется составным повторяющимся звеном. Составное звено, которое образуется из одной молекулы мономера при полимеризации, называется мономерным звеном (ранее иногда называлось элементарным звеном). Например, в полиэтилене [—СН2СН2—]n повторяющееся составное звено - СН2, мономерное -СН2СН2.Название линейного полимера образуют прибавлением приставки "поли" (в случае неорганических полимеров - "катенан-поли"): а) к названию составного повторяющегося звена, заключенному в скобки (систематические названия); б) к названию мономера, из которого получен полимер (полусистематические названия, которые ИЮПАК рекомендует использовать для обозначения наиболее часто применяемых полимеров).
35. Преимущества полимерных материалов.
Принципиально новый опыт - применение полимеров приизготовлении телеграфных столбов в США. Уже действует 512миллионов полимерных столбов, протянувших свои провода более чем на 33 миллиона километров. Среди главных преимуществ полимерных конструкций - простота установки. Вотличие от столбов из бетона и дерева, с инсталляциейпластиковых конструкций справляется один кран. При этом прочность изделий не утрачивается с годами, а их эксплуатация обходится дешево. Таким образом, полимеры завоевывают практически все сферы производства. И если в таких областях, как медицина или пищевая промышленность, пластик давно стал незаменимым материалом, то, например, в строительстве его успех только намечается. Сегодня широкий транспортный мост, полностью изготовленный из промышленного пластика (West Mill Bridge, Западная Европа), воспринимается скорее как диковинка. Но успех его эксплуатации гарантирует в ближайшем будущем широкое применение этой технологии по всему миру.
Практически все крупные производители ворот широко используют полимеры. Например, компания Hоrmann при производстве крупных промышленных консольных ворот на протяжении долгих лет использует только полимерные ролики.
36. Основные недостатки полимерных материалов
Недолговечность, Теоретически в вакууме, а лучше бы и при минимально возможной температуре, время жизни пенопластов как дисперсных полимерных структур было бы практически неограниченным. На практике же мы имеем всегда дело с воздушной средой, содержащей кислород, и с температурами, значительно отличающимися от абсолютного нуля.
Пожароопасность, Прежде всего, следует отметить, что в рекламе пенопластов авторы обычно, описывая данное свойство, несколько лукавят, утверждая, что какой-либо пенопласт не горит или самостоятельно затухает. Факт такого поведения пенопласта не говорит о пожарной безопасности данного материала. Дело в том, что официально классификация всех строительных материалов на пожарную опасность производится согласно стандартной методике в ходе которой учитывается убыль массы материала при нагревании на воздухе, а совсем не возможность самостоятельно гореть после удаления источника пламени. Поэтому по классификации на пожарную опасность ВСЕ пенопласты относятся к классу «Г», то есть горючих материалов.
Экологическая опасность, Вопросы экологической опасности пенопластов с теоретической точки зрения непосредственно вытекают из возможности их окислительной деструкции, чему, как уже указано выше, способствует высокая удельная поверхность пен и выделения в ходе этого процесса различных продуктов, преимущественно органического типа.
37.Применение полимерных материалов в машиностроении, электротехнике, сельском хозяйстве и других отраслях.
Сегодня можно говорить, по меньшей мере, о четырех основных направлениях использования полимерных материалов в сельском хозяйстве. И в отечественной и в мировой практике первое место принадлежит пленкам. Благодаря применению мульчирующей перфорированной пленки на полях урожайность некоторых культур повышается до 30%, а сроки созревания ускоряются на 10-14 дней. Использование полиэтиленовой пленки для гидроизоляции создаваемых водохранилищ обеспечивает существенное снижение потерь запасаемой влаги. Укрытие пленкой сенажа, силоса, грубых кормов обеспечивает их лучшую сохранность даже в неблагоприятных погодных условиях. Но главная область использования пленочных полимерных материалов в сельском хозяйстве - строительство и эксплуатация пленочных теплиц. В настоящее время стало технически возможным выпускать полотнища пленки шириной до 16 м, а это позволяет строить пленочные теплицы шириной в основании до 7,5 и длиной до 200 м. В таких теплицах можно все сельскохозяйственные работы проводить механизированно; более того, эти теплицы позволяют выращивать продукцию круглогодично. В холодное время теплицы обогреваются опять-таки с помощью полимерных труб, заложенных в почву на глубину 60-70 см.С точки зрения химической структуры полимеров, используемых в тепличных хозяйствах такого рода, можно отметить преимущественное использование полиэтилена, не пластифицированного поливинилхлорида и в меньшей мере полиамидов. Полиэтиленовые пленки отличаются лучшей светопроницаемостью, лучшими прочностными свойствами, но худшей погодоустойчивостью и сравнительно высокими теплопотерями. Они могут исправно служить лишь 1-2 сезона. Полиамидные и другие пленки пока применяются сравнительно редко.Другая область широкого применения полимерных материалов в сельском хозяйстве - мелиорация. Тут и разнообразные формы труб и шлангов для полива, особенно для самого прогрессивного в настоящее время капельного орошения; тут и перфорированные пластмассовые трубы для дренажа. Интересно отметить, что срок службы пластмассовых труб в системах дренажа, например, в республиках Прибалтики в 3-4 раза дольше, чем соответствующих керамических труб. Вдобавок использование пластмассовых труб, особенно из гофрированного поливинилхлорида, позволяет почти полностью исключить ручной труд при прокладке дренажных систем.Два остальных главных направления использования полимерных материалов в сельском хозяйстве - строительство, особенно животноводческих помещений, и машиностроение. До недавних пор широкому использованию полимерных материалов в машиностроении препятствовали два, казалось бы, общепризнанных недостатка полимеров: их низкая (по сравнению с марочными сталями) прочность и низкая теплостойкость. Рубеж прочностных свойств полимерных материалов удалось преодолеть переходом к композиционным материалам, главным образом стекло и углепластикам. Так что теперь выражение “пластмасса прочнее стали” звучит вполне обоснованно. В то же время полимеры сохранили свои позиции при массовом изготовлении огромного числа тех деталей, от которых не требуется особенно высокая прочность: заглушек, штуцеров, колпачков, рукояток, шкал и корпусов измерительных приборов. Еще одна область, специфическая именно для полимеров, где четче всего проявляются их преимущества перед любыми иными материалами, - это область внутренней и внешней отделки.
То же самое можно сказать и о машиностроении. Почти три четверти внутренней отделки салонов легковых автомобилей, автобусов, самолетов, речных и морских судов и пассажирских вагонов выполняется ныне из декоративных пластиков, синтетических пленок, тканей, искусственной кожи. Более того, для многих машин и аппаратов только использование антикоррозионной отделки синтетическими материалами обеспечило их надежную, долговременную эксплуатацию. К примеру, многократное использование изделия в экстремальных физико-технических условиях (космосе) обеспечивается, в частности, тем, что вся его внешняя поверхность покрыта синтетическими плитками, к тому же приклеенными синтетическим полиуретановым или полиэпоксидным клеем. А аппараты для химического производства? У них внутри бывают такие агрессивные среды, что никакая марочная сталь не выдержала бы. Единственный выход - сделать внутреннюю облицовку из платины или из пленки фторопласта. Гальванические ванны могут работать только при условии, что они сами и конструкции подвески покрыты синтетическими смолами и пластиками.
38.Классификация органических соединений.
Основные классы органических соединений биологического происхождения — белки, липиды, углеводы, нуклеиновые кислоты — содержат, помимо углерода, преимущественно водород, азот, кислород, серу и фосфор. Именно поэтому «классические» органические соединения содержат прежде всего водород, кислород, азот и серу — несмотря на то, что элементами, составляющими органические соединения, помимо углерода могут быть практически любые элементы.Соединения углерода с другими элементами составляют особый класс органических соединений — элементоорганические соединения. Металлоорганические соединения содержат связь металл-углерод и составляют обширный подкласс элементоорганических соединений.
39.Источники органических веществ. Нефть. Каменный уголь. Древесина. Торф. Другие источники
Источники органического вещества. Основной источник органического вещества почвы - остатки отмерших организмов - растений и животных. Количество органических остатков, поступающих в почву и на ее поверхность, определяется не только типом растительности, ее возрастом (имеется в виду древесная многолетняя), но и условиями произрастания. В таежно-лесной зоне, в еловом лесу 60-80-летнего возраста средний годовой опад составляет 4—7 т на 1 га. Примерно такое же количество опада оставляет береза.
Нефть (из тур. neft, от персидск. нефт[4]) — природная маслянистая горючая жидкость, состоящая из сложной смеси углеводородов и некоторых других органических соединений. По цвету нефть бывает красно-коричневого, иногда почти чёрного цвета, хотя иногда встречается и слабо окрашенная в жёлто-зелёный цвет и даже бесцветная нефть; имеет специфический запах, распространена в осадочных породах Земли. Сегодня нефть является одним из важнейших для человечества полезных ископаемых.
Каменный уголь — это осадочная порода, представляющая собой товар глубокого разложения остатков растений (древовидных папоротников, хвощей и плаунов, а также первых голосеменных
Древеси́на:
в обыденной жизни и технике древесиной называют внутреннюю часть дерева, лежащую под корой;в ботанике под древесиной, или ксилемой, подразумевают ткань или совокупность тканей, образовавшихся из прокамбия или камбия. Самые ранние из известных науке ископаемых древесных растений были обнаружены в 2011 году в канадской провинции Нью-Брансуик, где между 395 и 400 миллионами лет назад произрастал древний лес. Торф (нем. Torf) — горючее полезное ископаемое; образовано скоплением остатков растений, подвергшихся неполному разложению в условиях болот. Для болота характерно отложение на поверхности почвы неполно разложившегося органического вещества, превращающегося в дальнейшем в торф. Слой торфа в болотах не менее 30 см, (если меньше, то это заболоченные земли).
40.Применение некоторых органических соединений в народном хозяйстве
Одним из основных путей увеличения урожая сельскохозяйственных культур является защита растений от болезней, в частности, от тех фитопатогенов, споры которых локализуются на поверхности семян. К наиболее вредоносным из них относятся возбудители твердой головни и корневых гнилей. Потери урожая зерновых культур от этих заболеваний могут достигать 20 - 35%. Одним из путей решения этой проблемы является применение озона. Результаты лабораторных исследований показывают, что при обработке семян озоном достигается существенное снижение поверхностно-семенной инфекции, а в случае твердой головни - полное элиминирование возбудителя. Кроме того, наблюдается повышение всхожести, увеличение длины и сырого веса проростков. По данным полевых испытаний зарегистрировано увеличение урожайности, которое составило для пшеницы -22.0%, ячменя - 14.0%, гороха - 11.0% , гречихи - 31% . Таким образом, по сравнению с известными способами борьбы с поверхностно-семенной инфекцией зерновых культур, предпосевная обработка семян озоном имеет ряд преимуществ, связанных с высокой технологичностью, достаточной эффективностью действия на возбудителей болезней и экологической безопасностью.
41. Номенкулатура органических соединений.
Номенклатура органических соединений (Н. о. с.). В начальный период развития органич. химии вещества получали случайные, тривиальные назв., основой которых служили природные источники, характерные свойства веществ, имена учёных. Такие назв. в ряде случаев сохранились и до сих пор.Научное название органического вещества должно отражать его химическое строение. Для этого употребляют сложные слова-названия, построенные по определённым правилам из обозначений более простых составных частей соединения и цифр или букв, указывающих расположение этих частей. Первой была постепенно сложившаяся во 2-й половине 19 в. рациональная номенклатура. Основу рационального названия составляет простой (но не обязательно первый) член данного гомологического ряда; названия "достраивают", указывая дополнительно (в приставке) имеющиеся радикалы и др. структурные части; их положение обозначают греческими буквами.
42. Преемственность отечественных научных школ в органической химии и химии высокомолекулярных соединений.
Основным методом органической химии является синтез. Развитие методов синтеза в первую очередь способствовало установлению строения самых сложных соединений. Идеальным завершением процесса определения структуры молекул органических соединений является полный синтез (тотальный синтез), т.е. получение с помощью совершенно однозначных химических методов соединения, структура которого была предложена на основании изучения другими методами. Органический синтез - очень тонкое искусство, и химику, приступающему к синтезу, необходимо совершенное сочетание теоретических и практических знаний с интуитивным подбором средств, наиболее подходящих для построения самых сложных молекул (см. также Органический синтез).Органическая химия изучает не только соединения, получаемые из растительных и животных организмов (так называемые природные вещества), но в основном соединения, созданные искусственно с помощью лабораторного или промышленного органического синтеза. Более того, объектами изучения компьютерной органической химии являются соединения, не только не существующие в живых организмах, но которые, по-видимому, нельзя получить искусственно (например, гипотетический аналог метана, имеющий не природное тетраэдрическое строение, а форму плоского квадрата, в центре которого лежит атом С, а в вершинах - атомы Н).Органический синтез связывает органическую химию с химической промышленностью, как малотоннажной (тонкий органический синтез, производство лекарств, витаминов, жидких кристаллов, ферментов, феромонов и др.), так и крупнотоннажной (основной органический синтез, производство искусственного волокна, пластмасс, переработка нефти и газа и др.).
43.Классификация неорганических соединений. Номенкулатура, получение и важнейшие химические свойства. Графические формулы
Химическая формула - изображение состава вещества с помощью символов химических элементов, числовых индексов и некоторых других знаков. Химическое название - изображение состава вещества с помощью слова или группы слов. Построение химических формул и названий определяется системой номенклатурных правил. Символы и наименования химических элементов приведены в Периодической системе элементов Д.И. Менделеева. Элементы условно делят на металлы и неметаллы. К неметаллам относят все элементы VIIIА-группы (благородные газы) и VIIА-группы (галогены), элементы VIА-группы (кроме полония), элементы азот, фосфор, мышьяк (VА-группа); углерод, кремний (IVА-группа); бор (IIIА-группа), а также водород. Остальные элементы относят к металлам.
44. Способы выражений концентраций растворов.
Концентрацию веществ в растворах можно выразить разными способами. На этой страничке вы с ними познакомитесь. Наиболее часто используют массовую долю растворённого вещества, молярную и нормальную концентрацию.
Массовая доля растворённого вещества w(B) - это безразмерная величина, равная отношению массы растворённого вещества к общей массе раствора m :
w(B)= m(B) / m
45. Жесткость воды и ее значение.
Природная вода обязательно содержит растворённые соли и газы (кислород, азот и др.). Присутствие в воде ионов Mg2+ и Са2+ и некоторых других, способных образовывать твёрдые осадки при взаимодействии с анионами жизненных органических кислот, входящих в состав различных мыл (например, со стеарат-ионом С17Н35СОО2-), обуславливает так называемую жёсткость воды. Во всех просмотренных нами научных источниках, понятие жёсткости воды обычно связано с катионами кальция (Са2+) и в меньшей степени магния (Mg2+). В действительности, все двухвалентные катионы в той или иной степени влияют на жёсткость. Они взаимодействуют с анионами, образуя соединения (соли жёсткости) способные выпадать в осадок. Одновалентные катионы (например, натрий Na+) таким свойством не обладают.В данной таблице приведены основные катионы металлов, вызывающие жёсткость, и главные анионы, с которыми они ассоциируются:
Катионы Анионы Кальций (Са2+) Гидрокарбонат (HCO3-) Магний (Mg2+) Сульфат (SO42-) Стронций (Sr2+)
Хлорид (Cl-) Железо (Fe2+) Нитрат (NO3-) Марганец (Mn2+) Силикат (SiO32-)
На практике стронций, железо и марганец оказывают на жёсткость столь небольшое влияние, что ими, как правило, пренебрегают. Алюминий (Al3+) и трёхвалентное железо (Fe3+) также влияют на жёсткость, но при уровнях рН, встречающихся в природных водах, их растворимость и, соответственно, "вклад" в жёсткость ничтожно малы. Аналогично, не учитывается и незначительное влияние бария (Ва2+).Чем выше концентрация указанных двухзарядовых катионов Mg2+ и Са2+ в воде, тем вода жёстче. Наличие в воде этих катионов приводит к тому, что при использовании, например при стирке, обычного мыла (но не синтетического моющего средства) часть его расходуется на образование с этими катионами нерастворимых в воде соединений так называемых жирных кислот (мыло представляет собой смесь натриевых и калиевых солей этих кислот):
2С17 Н35 СОО- + Са2+ = (С17Н 35СОО)2Саv 2С17Н 35 СОО- + Мg2+ = (С17Н 35СОО)2Mgv
и пена образуется лишь после полного осаждения ионов.
Мыла - это натриевые (иногда калиевые) соли органических кислот, и их состав можно условно выразить формулой NaR или KR, где R - кислотный остаток. Анионы R образуют с катионами кальция и магния нерастворимые соли CaR2 и MgR2 . На образование этих нерастворимых солей и расходуется бесполезно мыло. Таким образом, при помощи мыльного раствора мы можем оценить общую жёсткость воды, общее содержание в ней ионов кальция и магния. Ионы кальция (Ca2+) и магния (Mg2+), а также других щёлочноземельных металлов, обуславливающих жёсткость, присутствуют во всех минерализованных водах. Их источником являются природные залежи известняков, гипса и доломитов. Ионы кальция и магния поступают в воду в результате взаимодействия растворённого диоксида углерода с минералами и при других процессах растворения и химического выветривания горных пород. Источником этих ионов могут служить также микробиологические процессы, протекающие в почвах на площади водосбора, в донных отложениях, а также сточные воды различных предприятий. В маломинерализованных водах больше всего ионов кальция. С увеличением степени минерализации содержание ионов кальция быстро падает и редко превышает 1 г/л. Содержание же ионов магния в минерализованных водах может достигать нескольких граммов, а в солёных водах нескольких десятков граммов. В целом, жёсткость поверхностных вод, как правило, меньше жёсткости вод подземных. Жёсткость поверхностных вод подвержена заметным сезонным колебаниям, достигая обычно наибольшего значения в конце зимы и наименьшего в период половодья, когда обильно разбавляется мягкой дождевой и талой водой. Жёсткость - это особые свойства воды, во многом определяющие её потребительские качества и потому имеющие важное хозяйственное значение.
46.Устронение жесткости воды
Термоумягчение. Основан на кипячении воды, в результате термически нестойкие гидрокарбонаты кальция и магния разлагаются с образованием накипи:
Ca(HCO3)2 → CaCO3↓ + CO2 + H2O.Кипячение устраняет только временную (карбонатную) жёсткость. Находит применение в быту.
Реагентное умягчение. Метод основан на добавлении в воду кальцинированной соды Na2CO3 или гашёной извести Ca(OH)2. При этом соли кальция и магния переходят в нерастворимые соединения и, как следствие, выпадают в осадок. Например, добавление гашёной извести приводит к переводу солей кальция в нерастворимый карбонат:
Ca(HCO3)2 + Ca(OH)2 → 2CaCO3↓ + 2H2O.Лучшим реагентом для устранения общей жесткости воды является ортофосфат натрия Na3PO4, входящий в состав большинства препаратов бытового и промышленного назначения:
3Ca(HCO3)2 + 2Na3PO4 → Ca3(PO4)2↓ + 6NaHCO3
3MgSO4 + 2Na3PO4 → Mg3(PO4)2↓ + 3Na2SO4
Ортофосфаты кальция и магния очень плохо растворимы в воде, поэтому легко отделяются механическим фильтрованием. Этот метод оправдан при относительно больших расходах воды, поскольку связан с решением ряда специфических проблем: фильтрации осадка, точной дозировки реагента.
Катионирование. Метод основан на использовании ионообменной гранулированной загрузки (чаще всего ионообменные смолы). Такая загрузка при контакте с водой поглощает катионы солей жёсткости (кальций и магний, железо и марганец). Взамен, в зависимости от ионной формы, отдавая ионы натрия или водорода. Эти методы соответственно называются Na-катионирование и Н-катионирование. При правильно подобранной ионообменной загрузке жёсткость воды снижается при одноступенчатом натрий-катионировании до 0,05-0,1 °Ж, при двухступенчатом — до 0,01 °Ж. В промышленности с помощью ионообменных фильтров заменяют ионы кальция и магния на ионы натрия и калия, получая мягкую воду.
Обратный осмос. Метод основан на прохождении воды через полупроницаемые мембраны (как правило, полиамидные). Вместе с солями жёсткости удаляется и большинство других солей. Эффективность очистки может достигать 99,9 %. Этот метод нашёл наибольшее применение в бытовых системах подготовки питьевой воды. В качестве недостатка данного метода следует отметить необходимость предварительной подготовки воды, подаваемой на обратноосмотическую мембрану.
Электродиализ. Основан на удалении из воды солей под действием электрического поля. Удаление ионов растворенных веществ происходит за счёт специальных мембран. Так же как и при использовании технологии обратного осмоса, происходит удаление и других солей, помимо ионов жёсткости.Полностью очистить воду от солей жёсткости можно дистилляцией.