
- •1.1 Общая классификация магистральных трубопроводов
- •1.2 Состав сооружений магистральных газопроводов
- •1.3 Способы транспорта нефтяных грузов
- •1.4 Выбор наивыгоднейшего способа транспорта нефти
- •1.9. Требования, предъявляемые к трубам и материалам
- •1.10 Расчёт трубопровода на прочность
- •1.11. Необходимость подготовки нефти к магистральному транспорту
- •1.12 Образование нефтяных эмульсий и их основные свойства
- •1.13 Механические способы отделения воды от нефти
- •1.15 Электрическое деэмульгирование нефтяных эмульсий
- •1.16 Стабилизация нефти
- •1.17 Исходные данные для технологического расчёта нефтепровода
- •1.18. Основные формулы для гидравлического расчета нефтепровода
- •1.19. Коэффициент гидравлического сопротивления нефтепровода
- •1.20 Вывод обобщенной формулы Лейбензона
- •1.21 Гидравлический уклон
- •1.22 Характеристики трубопровода и насосной станции
- •1.23 Совмещенная характеристика нпс-трубопровод и баланс напоров
- •1.24. Определение числа перекачивающих станций
- •1.25 Перевальная точка и расчетная длина нефтепровода
- •1.26 Расстановка нпс по трассе нефтепровода
- •1.27 Расчет характеристик газовой смеси
- •1.28. Уравнение газового состояния
- •1.29. Необходимость подготовки газа к магистральному транспорту
- •1.30 Очистка газа от механических примесей
- •1.31 Изменение влажности газа по длине газопровода
- •1.32 Определение возможности гидратообразования в газопроводе
- •1.33 Методы борьбы с гидратообразованием
- •1.34 Осушка газа жидкими поглотителями
- •1.35 Осушка газа твердыми поглотителями
- •1.36. Низкотемпературная сепарация
- •1.37. Очистка газа от сероводорода и углекислого газа
- •1.38 Одоризация
- •1.39 Вывод формулы для определения массового расхода газа в газопроводе
- •1.40 Вывод формулы для определения коммерческого расхода газа в газопроводе
- •1.41 Коэффициент гидравлического сопротивления газопровода
- •1.42 Падение давления по длине газопровода. Среднее давление
- •Среднее давление в газопроводе.
- •1.43. Температурный режим газопровода
- •1.44. Расчет газопровода с учетом рельефа трассы
1.10 Расчёт трубопровода на прочность
Цель расчёта на прочность – определение типа размеров (толщины стенки) трубопровода при заданных основных нагрузках или наоборот.
При расчёте трубопровода на прочность основным воздействием считается внутреннее давление.
При этом, прежде всего учитывают кольцевые напряжения, и толщину стенки трубопровода рассчитывают по формуле:
где р – внутреннее давление;
n – коэффициент перегрузки (коэф-т надёжности по нагрузке);
Dн – наружный диаметр трубопровода;
R1 – расчётное сопротивление Ме трубы и сварных соединений.
где σвр – min предел прочности материала трубопровода (временное сопротивление);
m0 – коэффициент условий работы трубопровода (зависит от категории);
К1 – коэффициент надёжности по материалу;
Кн – коэффициент надёжности по назначению трубопровода ( выбир-ся по диаметру).
Расчётное значение δ округляется до ближайшего по ГОСТу в большую сторону.
Кольцевые напряжения возникают от внутреннего давления и определяются формулой σк = рDвн / (2δ).
1.11. Необходимость подготовки нефти к магистральному транспорту
Учебник Алиев стр 50
1.12 Образование нефтяных эмульсий и их основные свойства
Образование эмульсий уже начинается при движении нефти к устью скважины и продолжается при дальнейшем движении по промысловым коммуникациям, т. е. эмульсии образуются там, где происходит непрерывное перемешивание нефти и воды. Интенсивность образования эмульсий в скважине во многом зависит от способа добычи нефти, который, в свою очередь, определяется характером месторождения, периодом его эксплуатации и физико-химическими свойствами самой нефти.
В эмульсиях принято различать две фазы – внутреннюю и внешнюю. Внешнюю фазу – жидкость, в которой размещаются мельчайшие капли другой жидкости, называют дисперсионной, внешней или сплошной средой. Внутреннюю фазу – жидкость, находящуюся в виде мелких капель в дисперсионной среде, принято называть дисперсной, разобщенной или внутренней фазой.
По характеру внешней среды и внутренней фазы различают эмульсии двух типов: нефть в воде (н/в) и вода в нефти (в/н). Тип образующейся эмульсии в основном зависит от соотношения объёмов двух фаз; внешней средой стремится стать та жидкость, объём которой больше. На практике наиболее часто (95 %) встречаются эмульсии типа в/н.
На способность эмульгирования нефти и воды кроме соотношения фаз оказывает влияние присутствие эмульгаторов, т. е. веществ, которые способствуют образованию эмульсии. Они понижают поверхностное натяжение на границе раздела фаз и создают вокруг частиц внутренней фазы прочные адсорбционные оболочки. Эмульгаторы, растворимые в воде, способствуют созданию эмульсии нефть в воде. К таким гидрофильным эмульгатором относятся щелочные мыла, желатин, крахмал и др. Гидрофобные эмульгаторы (растворимые в нефти) способствуют образованию эмульсий типа в/н.
Нефтяные эмульсии характеризуются вязкостью, дисперсностью, плотностью, электрическими свойствами и стойкостью. Вязкость нефтяной эмульсии изменяется в широких диапазонах и зависит от собственной вязкости нефти, температуры образования эмульсии, соотношения количеств нефти и воды и температуры эмульсии.
Дисперсностью эмульсии принято называть степень раздробленности капель внутренней фазы во внешней среде. Дисперсность характеризуется одной из трёх взаимосвязанных величин: диаметром капель d,обратной величиной диаметра капель D = 1/d, обычно называемой дисперсностью; удельной межфазовой поверхностью, которая является отношением суммарной поверхности частиц к их общему объёму.
В зависимости от физико-химических свойств нефти и воды, а также от условий образования эмульсий размеры капель могут быть самыми разнообразными и колебаться в пределах от 0,1 мкм до нескольких десятых миллиметра.
Плотность нефтяных эмульсий определяется по формуле для смеси нескольких жидкостей:
,
где э, в, н – плотность эмульсии, воды и нефти при заданной температуре соответственно; q – содержание воды.
Электропроводность чистых нефтей колеблется от 10-9 до 10-14 См/м, т. е. смесь из этих двух компонентов является хорошим диэлектриком. Однако при растворении в воде незначительного количества солей или кислот резко увеличивается электропроводность воды, а следовательно, и эмульсии. Электропроводность нефтяных эмульсий увеличивается в несколько раз при нахождении их в электрическом поле. Это объясняется различной диэлектрической проницаемостью воды и нефти и ориентацией капель воды в нефти вдоль силовых линий электрического поля.
Стойкость (устойчивость) эмульсий, т. е. способность в течение определенного времени не разделяться на составные компоненты, является самым важным показателем для водонефтяных смесей. Чем выше устойчивость эмульсии, тем труднее процесс деэмульсации. Нефтяные эмульсии обладают различной стойкостью. На устойчивость водонефтяных эмульсий значительное влияние оказывают следующие факторы: дисперсность системы; физико-химические свойства эмульгаторов, образующие оболочки вокруг капель воды; наличие на глобулах внутренней фазы электрического заряда; температура эмульсии; состав пластовых вод.
При всех прочих равных условиях устойчивость эмульсий тем выше, чем больше дисперсность. Устойчивость эмульсий в большой степени зависит от состава компонентов, входящих в защитную оболочку, которая образуется на поверхности капли. В процессе существования эмульсий происходит упрочнение бронирующей оболочки, так называемое «старение» эмульсии. Установлено, что поверхностные слои обладают аномальной вязкостью, и со временем вязкость бронирующего слоя возрастает в десятки раз.
Наличие электрических зарядов на поверхности глобул увеличивает стойкость эмульсий. Чем больше поверхностный заряд капель, тем труднее их слияние и тем выше стойкость эмульсии. В статических условиях дисперсная система электрически уравновешена, что повышает устойчивость эмульсии.
С повышением температуры уменьшаются вязкость нефти и механическая прочность бронирующего слоя, что снижает устойчивость эмульсии. Существенно влияет на устойчивость нефтяных эмульсий состав пластовой воды.