
- •1.1 Общая классификация магистральных трубопроводов
- •1.2 Состав сооружений магистральных газопроводов
- •1.3 Способы транспорта нефтяных грузов
- •1.4 Выбор наивыгоднейшего способа транспорта нефти
- •1.9. Требования, предъявляемые к трубам и материалам
- •1.10 Расчёт трубопровода на прочность
- •1.11. Необходимость подготовки нефти к магистральному транспорту
- •1.12 Образование нефтяных эмульсий и их основные свойства
- •1.13 Механические способы отделения воды от нефти
- •1.15 Электрическое деэмульгирование нефтяных эмульсий
- •1.16 Стабилизация нефти
- •1.17 Исходные данные для технологического расчёта нефтепровода
- •1.18. Основные формулы для гидравлического расчета нефтепровода
- •1.19. Коэффициент гидравлического сопротивления нефтепровода
- •1.20 Вывод обобщенной формулы Лейбензона
- •1.21 Гидравлический уклон
- •1.22 Характеристики трубопровода и насосной станции
- •1.23 Совмещенная характеристика нпс-трубопровод и баланс напоров
- •1.24. Определение числа перекачивающих станций
- •1.25 Перевальная точка и расчетная длина нефтепровода
- •1.26 Расстановка нпс по трассе нефтепровода
- •1.27 Расчет характеристик газовой смеси
- •1.28. Уравнение газового состояния
- •1.29. Необходимость подготовки газа к магистральному транспорту
- •1.30 Очистка газа от механических примесей
- •1.31 Изменение влажности газа по длине газопровода
- •1.32 Определение возможности гидратообразования в газопроводе
- •1.33 Методы борьбы с гидратообразованием
- •1.34 Осушка газа жидкими поглотителями
- •1.35 Осушка газа твердыми поглотителями
- •1.36. Низкотемпературная сепарация
- •1.37. Очистка газа от сероводорода и углекислого газа
- •1.38 Одоризация
- •1.39 Вывод формулы для определения массового расхода газа в газопроводе
- •1.40 Вывод формулы для определения коммерческого расхода газа в газопроводе
- •1.41 Коэффициент гидравлического сопротивления газопровода
- •1.42 Падение давления по длине газопровода. Среднее давление
- •Среднее давление в газопроводе.
- •1.43. Температурный режим газопровода
- •1.44. Расчет газопровода с учетом рельефа трассы
1.28. Уравнение газового состояния
Состояние газа определяется зависимостью между давлением p, объемом V и температурой T. Аналитическая зависимость между этими двумя параметрами имеет наиболее простой вид для идеального газа. Это уравнение Клайперона. Для одного кмоля имеем
(4)
где
-
объем одного кмоля;
-
газовая постоянная.
Поскольку объем для всех газов при одних и тех же р и Т одинаковый, то для любых газов одинаковой будет и газовая постоянная . Это универсальная газовая постоянная, равная 8314 Дж/(кмоль*К), и по физическому смыслу является работой изобарического расширения одного кмоля газа при нагревании его на один градус.
Для единицы массы газа уравнение Клайперона имеет вид:
(5)
где v – удельный объем, величина обратная плотности
или
Здесь газовая постоянная R в отличии от зависит от молярной массы газа µ.
Из (4) и (5) следует
Физический смысл R аналогичен . В отличие от численное значение R зависит от состава газа, т.е. от его природы. Для смеси газов R можно также определить по правилу аддитивности по формуле
При давлениях и температурах обычных для транспорта газа законы (4) и (5) идеального газа должны применяться с поправкой на влияние Ван-дер-ваальсовых сил (природный газ сжимается больше, чем это следует для идеального газа). Реальное поведение газа позволяет учесть так называемый коэффициент сжимаемости Z, который входит в скорректированное уравнение Клайперона
Коэффициент Z зависит от давления, температуры и состава газа. Определить Z можно по эмпирическим формулам, например
,
где T
– в 0С;
р –
в кгс/см2
или по специальным номограммам в зависимости от так называемых приведенных температуры и давления
и
где Ткр - критическая температура, при которой и выше которой при повышении давления нельзя сконденсировать пар; ркр – критическое давление, при котором и выше которого повышением температуры нельзя испарить сжиженный газ.
Эти параметры также являются физическими характеристиками газа, зависящими от его состава. Для смеси газов Ткр и ркр определяются по правилу аддитивности
;
1.29. Необходимость подготовки газа к магистральному транспорту
Природный газ, получаемый с промыслов, содержит посторонние примеси: твердые частицы (песок и окалину), конденсат тяжелых углеводородов,
водяные пары и часто сероводород, углекислый газ и инертные газы. Присутствие твердых частиц в газе приводит к быстрому износу соприкасающихся с газом деталей компрессоров. Твердые частицы засоряют и портят арматуру газопровода и контрольно-измерительные приборы; скапливаясь на отдельных участках газопровода, они сужают его поперечное сечение.
Жидкие частицы, оседая в пониженных участках трубопровода, также вызывают уменьшение площади его поперечного сечения. Они, кроме того, оказывают корродирующее действие на трубопровод, арматуру и приборы. Влага в определенных условиях приводит к образованию гидратов, выпадающих в газопроводе в виде твердых кристаллов. Гидратные пробки могут полностью закупорить трубопровод.
Сероводород — весьма вредная примесь. В количествах, больших 0,01 мг на 1л воздуха рабочей зоны, он ядовит. При промышленном использовании газа содержащийся в нем сероводород отрицательно сказывается на качестве выпускаемой продукции. В присутствии влаги сероводород вызывает сильную коррозию металлов. Углекислый газ вреден главным образом тем, что он снижает теплоту сгорания газа. Перед поступлением в магистральный газопровод газ должен быть осушен и очищен от вредных примесей. Кроме того, газ подвергают одоризации, т.е. вводят в него компоненты, придающие ему резкий и неприятный запах. Одоризация позволяет более быстро обнаружить утечки газа.
Подготовка газа к транспорту проводится на специальных установках, находящихся на головных сооружениях газопровода. Газ после подготовки к транспортировке должен соответствовать требованиям отраслевого стандарта на природный газ, транспортируемый по магистральным газопроводам, с учетом климатических условий.