
- •Сток, река, водосбор реки, бассейн реки.
- •Методы исследований режима стока.
- •Гидрографические и геологические характеристики бассейна реки.
- •Морфометрические характеристики бассейна реки.
- •Климатические характеристики бассейна реки.
- •Количественные характеристики речного стока.
- •Типовой гидрограф (определение, состав, назначение).
- •Типы гидрографов.
- •Метод модульных коэффициентов в построении гидрографов; районирование характеристик внутригодового распределения речного стока. Метод модульных коэффициентов.
- •Районирование характеристик внутригодового распределения речного стока.
- •Норма годового стока при достаточном периоде наблюдений.
- •Погрешность гидрометрических измерений и расчетных характеристик при определении нормы годового стока.
- •Выбор расчетного периода для определения нормы годового стока.
- •Определение нормы годового стока при непродолжительном периоде наблюдений.
- •Определение нормы годового стока при отсутствии гидрометрических наблюдений.
- •Интегральная кривая стока и лучевой масштаб в прямоугольной системе координат.
- •Интегральная кривая стока и лучевой масштаб в косоугольной системе координат.
- •17.Использование интегральной кривой стока и лучевого масштаба.
- •18.Применение теории вероятностей к расчетам колебаний годового стока.
- •19.Понятие о кривых распределения и обеспеченности.
- •Кривые обеспеченности дают возможность сравнивать различные реки по одинаковым показателям ( ,к…), позволяют делать широкие гидрологические обобщения. И, чем длиннее ряд, тем надежнее расчеты.
- •20.Параметры кривой распределения.
- •21.Параметры кривой обеспеченности.
- •22.Мера погрешности коэффициента вариации и коэффициента асимметрии (при построении кривых обеспеченности).
- •Коэффициент асимметрии характеризует степень несимметричности ряда рассматриваемой случайной величины относительно ее среднего значения и вычисляется по формуле
- •Относительные средние квадратические ошибки определения коэффициентов вариации Cv и асимметрии Cs вычисляются по формулам с.Н. Крицкого и м.Ф. Менкеля:
- •23.Максимальный расход воды.
- •Факторы формирования максимальных расходов воды.
- •Вычисление максимальных расходов рек по гидрологическим наблюдениям.
- •Вычисление максимальных расходов дождевых паводков при отсутствии материалов наблюдений.
- •Нормирование расчетных значений наибольших расходов воды (гарантийная поправка).
- •Минимальный расход воды.
- •Расчет минимального стока при наличии гидрометрических наблюдений.
- •Русловые процессы (определения).
- •Твердый сток.
- •Деформации русла.
- •Заиление водохранилищ.
- •34.Расчеты стока наносов.
- •Типы водохранилищ. Гидрологический режим водохранилища (состав).
- •Ветро-волновой режим водохранилища.
- •Уровенный режим водохранилища.
- •Термический режим водохранилища.
- •Ледовый режим водохранилища.
- •Водный баланс водохранилища.
- •.Определение среднего уровня воды в водохранилище.
- •Определение объема и аккумуляции воды в водохранилище.
- •Расчет основного притока в водохранилище.
- •Расчет бокового притока в водохранилище.
- •Метод подсчета притока воды в водохранилище по уравнению водного баланса.
- •Учет стока воды через гэс.
- •Гидрологические прогнозы при эксплуатации водохранилищ (определение, назначение, виды прогнозов).
- •Краткосрочные прогнозы притока воды в водохранилище.
- •Долгосрочные прогнозы притока воды в водохранилище.
- •Гидрологические расчеты и управление работой водохранилища при эксплуатации гэс (диспетчерский график).
- •Порядок расчетов при планировании работы водохранилища на основании гидрологического прогноза.
- •Гидрологическая информация и ее использование для работы гэс.
- •Формы и способы представления гидрологической информации.
34.Расчеты стока наносов.
Степень
насыщенности
речного потока взвешенными
наносами
определяется мутностью
воды r,
выражаемой
обычно в граммах наносов на кубический
метр (г/м3),
r=
,
где Р - вес наносов в пробе в граммах,
А - объем пробы воды в см3.
Максимальная мутность воды в реках наблюдается в периоды весеннего половодья и дождевых паводков и возрастает от водной поверхности ко дну.
Количество взвешенных наносов, проходящих через определенное живое сечение гидроствора в одну секунду, называется расходом взвешенных наносов R и расcчитывается по формуле:
R=0,001rсрQ=0,001rсрvcрВ кг/сек,
где rср - средняя мутность воды в г/м3,
Q - расход в м3/сек,
vср- средняя скорость потока,
В - площадь живого сечения в м2.
Средняя мутность rср определяется по нескольким пробам воды (или интегрально) батометром Молчанова на скоростных вертикалях гидроствора и равна для всего расхода реки:
rср=
г/м3.
Через ежедневные расходы взвешенных наносов можно раcсчитать количество проносимых рекой наносов за декаду, месяц и год.
Типы водохранилищ. Гидрологический режим водохранилища (состав).
Типы водохранилищ:
Искусственно созданное озеро называется водохранилищем. Водохранилище образуется путем воздействия подпорного сооружения - дамба, каменно-набросная плотина, глухие плотины, бетонные плотины (бетонно-арочные гравитационные плотины, прямые бетонные гравитационные плотины). Чашей водохранилища обычно служит долина реки или котловина озера. В плане водохранилища бывают озерного, озерно-речного типа.
По
площади водного зеркала водохранилища
классифицируются на малые 10W50
км2,
средние50W250
км2,
крупнейшиеW1000км2.
По средней глубине hср
на мелководные hcр10м,
средние 10hср20
м, глубоководные hср15
– 20м. По степени прочности, характеризуемой
отношением
,
(где Wпр-
средний многолетний годовой объем
притока, W-
объем воды при НПГ) на сильнопроточные
100
>4,
средне- и слабопроточные 4>
>1,
непроточные (аккумулятивно-бессточные)
1>
>0,1.
Гидрологический режим водохранилищ:
Для расчета водного баланса водохранилищ, который полностью используется для расчета работы ГЭС и для расчета – планирования выработки электроэнергии, необходимо изучить гидрологический, метеорологический режим акватории водохранилища и его бассейна.
В гидрологический режим входят:
ветроволновой режим,
уровенный режим;
термический режим;
ледовый режим;
режим наносов;
химический режим;
метеорологический режим;
режим подземных вод;
режим переработки берегов.
Ветро-волновой режим водохранилища.
Для внесения поправок и расчета среднего уровня водохранилища, для изучения режима переработки берегов, а также, для судоходства, необходимы данные о ветро-волновом режиме.
Как правило, при созданном водохранилище, роза местных ветров существенно меняется, что должно использоваться при градостроительстве, расчет ветровых нагрузок на объекты гражданского, военного строительства и особенно для линий электропередач, сельского хозяйства.
Сгонно-нагонные явления также искажают уровень водохранилищ на значительную величину, что приводит к необходимости строительства дополнительных водомерных постов по периметру и используя данные наблюдений постов рассчитывается средний уровень водохранилища.
Сейши также приводят к искажению истинного уровня водохранилищ, причина – разные барические атмосферные поля, находящиеся над акваторией водохранилища. Чтобы их учитывать, необходимы метеонаблюдения и уровенные наблюдения в репрезентативных точках по акватории водохранилищ.
Волны гидравлического удара - это волны, образующиеся в результате резкого повышения или резкого уменьшения сбросов в нижний бьеф.