
15.Провідники в електричному полі
Типовими провідниками є метали — речовини, які містять «вільні» електрони.
Усередині металу електричне поле відсутнє (внаслідок екрануючої дії наведених зовнішнім полем зарядів на поверхні металу). Цю обставину покладено в основу електростатичного захисту чутливих електровимірювальних приладів та іншої апаратури від зовнішніх електричних полів. Для цього їх оточують густою металевою сіткою.
Речовини, внесені в електричне поле, можуть суттєво змінити його. Це пов’язано з тим, що речовина складається з заряджених частинок. При наявності зовнішнього поля відбувається перерозподіл заряджених частинок, і в речовині виникає власне електричне поле. Повне електричне поле Е складається з зовнішнього поля Е0 і внутрішнього поля Е’ яке створюють заряджені частинки речовини.
Загалом речовини різноманітні за своїми електричними властивостями. Найбільш широкими класами речовин є провідники і діелектрики.
Головна особливість провідників – наявність вільних зарядів (електронів), які беруть участь в тепловому русі і можуть пересуватися по всьому об’єму провідника під дією електричного поля. Типові провідники – метали.
Вивчаючи електричне поле в провідниках необхідно пам’ятати наступне:
1. Електричне поле всередині провідника дорівнює нулю (сумарний від’ємний заряд електронів скомпенсований додатнім зарядом іонів).
2. В середині провідника, що перебуває в зовнішньому електричному полі, поле відсутнє Е = 0:
Е = Езовн + Еіндук = 0
3. В середині зарядженого провідника поле дорівнює нулю, а надлишкові заряди розподілені по поверхні (чим менший радіус кривизни поверхні, тим більша поверхнева густина заряду).
4. Силові лінії результуючого поля поблизу поверхні провідника повинні бути напрямлені перпендикулярно поверхні в кожній її точці (оскільки наявність дотичної призводить до руху електронів вздовж поверхні, а таке неможливе, оскільки поверхня провідника – еквіпотенціальна).
16.Електроємність
Під час зарядження двох провідників між ними виникає різниця потенціалів чи напруга. Із підвищенням напруги електричне поле між провідниками підсилюється.
Чим меншим є зростання напруги між провідниками зі збільшенням заряду, тим більший заряд можна накопичити. Величину, яка характеризує здатність провідників накопичувати електричний заряд, називають електроємністю. Напруга U між двома провідниками пропорційна величині електричних зарядів, утворених на провідниках. Тому відношення заряду q одного з провідників до різниці потенціалів між цими провідниками не залежить від заряду. Воно визначається геометричними розмірами провідників, їх формою і взаємним розміщенням та електричними властивостями навколишнього середовища (діелектричною проникністю e).
Це дозволяє ввести поняття електроємності двох провідників. Електроємністю двох провідників називають відношення заряду одного з провідників до різниці потенціалів між цим провідником і сусіднім.
У СІ одиниця вимірювання електроємності - фарад: [C] = Кл/В = Ф.
Електроємність двох провідників дорівнює 1 Ф, якщо у разі надання їм зарядів +1 Кл і -1 Кл між ними виникає різниця потенціалів 1 В.
Оскільки заряд 1 Кл дуже великий, то й ємність 1 Ф дуже велика (наприклад, електроємність земної кулі Сз = 0,7·10-3 Ф). Тому на практиці часто використовують частки цієї одиниці: мікрофарад (мкф) - 10-6 Ф; пікофарад (пФ) - 10-12 Ф.
Електроємність залежить від геометричних розмірів і форми провідника, розміщення навколо нього інших провідників, діелектричних властивостей середовища. Електроємність не залежить від матеріалу провідника, наявності в ньому порожнин та від величини заряду.