
- •1. Обзор протоколов обмена данными по телефонным линиям
- •2. Контроль четности
- •3. Стартовые и стоповые биты
- •4. Боды и биты в секунду
- •5. Соединение по протоколу slip
- •7. Что такое slip?
- •7. Инкапсуляция данных slip
- •10. Недостатки slip
- •11. Отсутствие возможности адресации
- •14. Протокол slip со сжатием (cslip)
- •15. Предпосылки к появлению cslip
- •16. Влияние аппаратных средств
- •17. Цели проектирования
- •18. Реализация slip
- •19. Протокол Point-to-Point (ррр)
- •20. Инкапсуляция данных ррр
- •21. Кадр данных ррр
- •22. Тип кадра данных в ррр
- •23. Инкапсуляция ррр по сравнению со slip
- •24. Функции по управлению соединением
- •25. Фаза установления соединения
- •27. Фаза управления сетью
- •28. Фаза прекращения соединения
- •29. Протокол управления соединением
- •30. Пакеты lcp
- •31. Структура пакетов конфигурации соединения lcp
- •32. Структура пакетов окончания сеанса lcp
- •33. Структура пакетов управления соединением lcp
- •34.Варианты конфигурации соединения lcp
- •35. Максимальная длина принимаемого блока
- •36. Конфигурация протокола авторизации доступа
- •37. Конфигурация протокола управления качеством
- •38. Магическое число
- •39. Сжатия данных поля протокола
- •40. Конфигурация сжатия полей адреса и управления
- •41. Что такое протокол управления сетью ip?
- •42. Чем ipcp отличается от lcp?
- •43. Варианты конфигурации протокола iрср
- •44. Конфигурация протокола сжатия ip
- •45. Конфигурация ip-адреса
- •46. Резюме
14. Протокол slip со сжатием (cslip)
Алгоритм SLIP со сжатием заголовков данных, увеличивающий производительность сети, рассматривается в документе под названием RFC 1144, «Сжатие заголовков TCP/IP на низкоскоростных последовательных соединениях» (Compressing TCP/IP Headers for Low-Speed Serial Links, Jacobson, 1990).
Протокол CSLIP сжимает только заголовки пакетов. Сами данные пакета остаются неизменными. Точнее, CSLIP сжимает исключительно заголовки TCP и IP для сегментов данных TCP. CSLIP не затрагивает ни заголовки пакетов UDP, ни заголовки IP для них. Разработано достаточно много различных реализаций протокола CSLIP, поэтому вам скорее всего не понадобится изобретать новую. Вероятнее, вам придется конструировать алгоритмы передачи сетевой информации по последовательному каналу, а здесь не обойтись без знания эффективной методики по устранению избыточной информации из пакетов данных. CSLIP хорошо иллюстрирует применение одного из таких алгоритмов, пригодных для передачи информации не только по последовательному каналу.
15. Предпосылки к появлению cslip
Чтобы понять, почему сжатие заголовков пакетов столь эффективно, давайте рассмотрим некоторые типичные сетевые задачи;
- интерактивный вход в удаленный компьютер (Telnet);
- интерактивная передача файлов (FTP);
- электронная почта с использованием Simple Mail Transfer Protocol (SMTP);
- чтение и передача новостей с использованием Network News Transfer Protocol (NNTP).
Как и любая другая линия связи, последовательная линия переносит пакеты данных пользователя, снабженные заголовками. Для увеличения пропускной способности линии не мешало бы сжимать заголовки пакетов. Способы передачи пакетов по сети делятся на две большие категории: интерактивные и неинтерактивные. Мы покажем позже, что эффективность канала связи зависит от типа передачи пакетов.
Прекрасными примерами неинтерактивной передачи пакетов служат два протокола: FTP и NNTP. Разумеется, начальная стадия работы обоих процессов включает их ручную настройку и передачу параметров. Однако все, что происходит потом — это перекачка информации с одного сетевого хоста на другой, не требующая вашего вмешательства. При запуске ftp с вашего компьютера вы указываете имя файла для передачи, а потом сидите и ждете, пока поток байтов, составляющих этот файл, попадет с другого хоста на ваш собственный. Точно так же вы выбираете группу новостей в приложении NNTP и ждете, пока все новости с сервера передадутся на ваш компьютер. Все это примеры неинтерактивной передачи пакетов.
Типичным примером интерактивной передачи информации служит Telnet. Каждое нажатие на клавиатуре пользователя обычно приводит к посылке пакета, содержащего код введенного символа, на удаленный сетевой хост. Несмотря на то, что многие реализации Telnet умеют передавать сразу всю введенную строку символов, обычно эта возможность не используется, ибо пользователь хочет получить незамедлительную реакцию удаленного компьютера на введенный символ. Кроме того, удаленный компьютер посылает пакет-подтверждение с копией введенного символа обратно пользователю. В общем, Telnet создает двунаправленный поток данных, состоящий из маленьких пакетов.
Обыкновенно IP-заголовки имеют длину в 20 байт, заголовок TCP имеют длину также в 20 байт. Отсюда следует, что сеанс Telnet создает пакеты данных длиной в 40 байт заголовков для каждого переданного символа в один байт. Для понимания принципа работы CSLIP нужно усвоить два различных, но тесно связанных понятия: эффективность линии и интерактивная реакция системы. Эффективность линии — это коэффициент, равный длине заголовка TCP/IP пакета, деленной на длину заголовка плюс длину данных пользователя в этом пакете. Мы сейчас вычислим эффективность линии для сеанса Telnet.
1. Предположим, что программа Telnet передает один пакет на одно нажатие клавиши, которое, в свою очередь, состоит из одного символа длиной в байт.
2. Пакет данных, содержащий символ длиной в байт и снабженный TCP/IP заголовками (еще 40 байт), будет иметь длину в 41 байт.
3. Приемник пакета должен послать обратно подтверждение о доставке, и это будет пакет длиной в 41 байт.
4. Теперь сосчитаем эффективность линии. Она составит менее трех процентов.
Примечание: Процесс передачи по TCP/IP дуплексный, так как пакеты данных следуют независимо друг от друга в обоих направлениях, поэтому эффективность линии считается независимо для обоих направлений. Впрочем, в нашем случав результат одинаков как для одного, так и для другого направления.
Для увеличения эффективности линии надо либо увеличить количество данных в пакете, либо уменьшить размер заголовков. Алгоритм CSLIP концентрирует внимание на уменьшении размеров заголовков пакетов. Кроме того, CSLIP соблюдает требования интерактивной реакции системы. Интерактивность реакции системы — это просто ее свойство убедить пользователя в том, что все работает. Например, когда пользователь нажимает клавишу, он, вполне понятно, хочет увидеть, как введенный символ отобразится на его мониторе. Если работа сети приводит к ощутимым задержкам при передаче пакета, пользователь расценит интерактивность сети как неудовлетворительную.
В RFC 1144 рассматривается, каким образом особенности передачи заголовков пакетов сетевых данных могут влиять на восприятие ситуации пользователем. Предположив, что каждый введенный символ приводит к появлению двух пакетов длиной в 41 байт, получим, что для обеспечения задержки эха не более чем на 200 миллисекунд, необходимо, чтобы скорость обмена составляла по меньшей мере 4000 бит в секунду. Другими словами, медленная последовательная линия заставляет пользователя думать, будто скорость работы программы мала, даже если программа вполне эффективна в действительности.
Неинтерактивная передача пакетов также может влиять на интерактивную реакцию системы. Например, чтобы передача неинтерактивных пакетов обладала эффективностью более 90 процентов при длине TCP/IP заголовков в 40 байт, необходимо сохранять максимальную длину пакета (MTU) в диапазоне от 500 до 1000 байт. Предположим далее, что ваше соединение SLIP имеет MTU 1024 байт при скорости модема 9600 бод. При этом один пакет в одну сторону будет передаваться приблизительно в течение секунды. Любой интерактивный сеанс будет при этом ждать окончания передачи неинтерактивного пакета.