
- •М.В. Горшков экологический мониторинг Учебное пособие
- •Введение
- •Курс лекций раздел 1. Научные основы экологического мониторинга
- •Раздел 2. Приоритетные контролируемые параметры природной среды
- •2.1 Контроль качества воздуха
- •2.2 Контроль качества воды
- •2.3 Контроль качества почвы
- •Характеристика почвы по санитарному числу [54]
- •2.4 Контроль качества продуктов питания
- •2.5 Контроль воздействия физических факторов
- •2.6 Контроль воздействия ксенобиотиков
- •2.7 Контроль воздействия неорганических соединений
- •Раздел 3. Виды мониторинга и пути его реализации
- •Уровни мониторинга [12]
- •Раздел 4. Фоновый мониторинг. Методы отбора и консервации проб
- •4.1 Отбор проб атмосферного воздуха
- •4.2 Отбор проб воды
- •Способы консервации, особенности отбора и хранения проб [30]
- •4.3 Отбор проб почвы
- •Раздел 5. Всемирная метеорологическая организация и международный мониторинг загрязнения биосферы
- •Раздел 6. Национальный мониторинг российской федерации
- •Раздел 7. Региональный мониторинг
- •Раздел 8. Локальный мониторинг
- •Раздел 9. Медико-экологический мониторинг
- •Раздел 10. Основы биологического мониторинга
- •10.1 Биоиндикация
- •10.2 Оценка биологического разнообразия
- •Шкала обилия Друде и шкала обилия Хульта (балльная)
- •Тема 11. Мониторинг радиационного загрязнения природной среды
- •Классификация радионуклидов по степени биологического воздействия
- •Тема 12. Автоматизированные системы контроля окружающей среды (аскос)
- •12.1 Аэрокосмический мониторинг и данные дистанционного зондирования
- •1 Канал (голубой):
- •6 Канал (длинноволновый инфракрасный или тепловой):
- •7 Канал (средний, или коротковолновый инфракрасный):
- •8 Канал (панхроматический - 4,3,2):
- •12.2 Моделирование процессов и применение геоинформационных систем
- •12.3 Интеллектуальные системы для целей экологического мониторинга
- •12.3 Экологические информационные системы
- •Список использованной литературы для курса лекций
- •Интернет ресурсы:
- •Практикум тема 1. Оценка приоритетных контролируемых параметров природной среды
- •Пробы воды реки Амур
- •Лабораторная работа №1.
- •Тема 2. Статистическая обработка экологических результатов
- •2.1 Описательная статистика
- •2.2 Параметрические и непараметрические критерии
- •2.3 Графическое представление данных
- •2.4 Статистическая связь. Корреляционный анализ
- •2.5 Дисперсионный анализ
- •Логическая схема однофакторного дисперсионного комплекса
- •Лабораторная работа №2.
- •2.6 Регрессионный анализ
- •2.7 Анализ временных рядов
- •Тема 3. Биологический мониторинг и оценка интегральных экологических показателей
- •3.1 Биоиндикация
- •Лабораторная работа №3.
- •3.2 Оценка биологического разнообразия сообществ
- •Лабораторная работа №4.
- •Тема 4. Информационные технологии для экологического мониторинга
- •4.1 Пакет статистических программ Statistica
- •Состав и температура проб воды Амурского и Уссурийского заливов (Дулепов, Лескова, 2006)
- •4.2 Редактор электронных таблиц ms Excel
- •Тема 5. Локальный экологический мониторинг. Эколого-инженерная документация
- •5.1 Технологии очистки от загрязнений Воздух
- •Список использованной литературы при подготовке практикума
- •Приложения к курсу лекций
- •Предельно допустимые концентрации наиболее распространенных экотоксикантов в воздухе (Шелковников, 2007).
- •Предельно допустимые концентрации наиболее распространенных экотоксикантов в воде (Шелковников, 2007).
- •Предельно допустимые концентрации наиболее распространенных экотоксикантов в почве (Шелковников, 2007).
- •Приложение к практикуму Матрица пересечения для водорослей-макрофитов залива Восток (Японское море), рассчитано по данным в.Ф. Макиенко (1975)
- •Матрица пересечений для ботанического памятника природы «Приморский комплекс», рассчитано в.П. Селедца (2005)
- •Матрица пересечения для водорослей-макрофитов дв побережья России, рассчитано по данным н.Г. Клочковой (1997)
- •Оглавление
5.1 Технологии очистки от загрязнений Воздух
Для очистки газопылевых выбросов применяют (в зависимости от степени запылённости):
Для механической очистки сухим способом:
Сухие пылеуловители: циклоны, пылеосадительные камеры. Применяется для сухого удаления крупной и тяжёлой пыли. Принцип работы основан на оседании пыли вод действием центробежных сил и сил тяжести.
Электрофильтры (электростатические фильтры). Применяется для сухой очистки частиц мелкой пыли размером до 0,01 мкм (например, от копоти и табачного дыма). Принцип работы основан на ионизации газопылевого потока у поверхности коронирующих электродов, с последующим их осаждением на поверхность электрода.
Для очистки твёрдых или газообразных сред от примесей в различных химико-технологических процессах мокрым способом применяют скрубберы. Способ основан на промывке газа жидкостью (обычно водой) при максимально развитой поверхности контакта жидкости с частицами аэрозоля и возможно более интенсивном перемешивании очищаемого газа с жидкостью. Данный метод позволяет удалить из газа частицы пыли, дыма, тумана и аэрозолей (обычно нежелательные или вредные) практически любых размеров. Выделяют:
Скрубберы насадочные;
Скрубберы центробежные;
Пенные аппараты;
Скрубберы Вентури.
Для увлажнения воздуха применяют увлажнители. Идеальная относительная влажность в жилом помещении составляет 40-60 %, а зимой системы центрального отопления и другие обогревательные приборы приводят к пересушиванию воздуха до влажности 20-25 %. Выделяют:
Паровые увлажнители;
Ультразвуковые увлажнители.
Для биологической очистки применяются ионизаторы воздуха эритемными лампами с бактерицидным эффектом.
Вода
Очищение воды происходит в несколько этапов:
Механический. Производится предварительная очистка поступающих на очистные сооружения сточных вод с целью подготовки их к биологической очистке. На данном этапе происходит задержание нерастворимых примесей. Основные сооружения:
Решётки (или УФС – устройство фильтрующее самоочищающееся) и сита. Служат для задержания крупных загрязнений органического и минерального происхождения. Максимальная ширина прозоров решётки составляет 16 мм.
Песколовки. Служат для выделения мелких тяжёлых минеральных частиц (песок, шлак, бой стекла т. п.) путём осаждения. Также применяются жироловки, в которых происходит удаление с поверхности воды гидрофобных веществ путём флотации (процесс разделения мелких твёрдых частиц (главным образом, минералов), основанный на различии их в смачиваемости водой).
Мембранные элементы. Основаны на применении искусственных мембран, т.е. жестких селективно-проницаемых перегородок, разделяющих массообменный аппарат на две рабочие зоны, в которых поддерживаются различные давления и составы разделяемой смеси.
Первичные отстойники. Предназначены для осаждения взвесей.
Биологический. На данном этапе происходит минерализация сточных вод, удаление органического азота и фосфора, главной целью является снижение БПК5. Биологическая очистка предполагает деградацию органической составляющей сточных вод микроорганизмами (бактериями и простейшими). Сооружения для очистки:
Аэротенки (активный ил). Представляет собой бетонный или железобетонный проточный резервуар, разделённый перегородками на ряд коридоров (ширина коридоров 8-10 м, высота 4-5 м, длина до 150 м). Коридоры оснащены аэраторами, через которые подаётся воздух для снабжения кислородом искусственно вносимого активного ила и его перемешивания со сточными водами. Жидкая смесь, протекая по аэротенкам, очищается в результате окисления содержащихся в ней органических загрязнений микроорганизмами активного ила. Продолжительность пребывания сточной жидкости в них 6-12 ч.
Метантенки (анаэробное брожение). Распад органических веществ протекает в 2 фазы. В первой фазе из углеводов, жиров и белков образуются жирные кислоты, водород, аминокислоты и пр. Во второй – происходит разрушение кислот с образованием преимущественно метана и углекислого газа. В М. подаётся обычно смесь сырого (свежего) осадка из первичных отстойников и избыточный активный ил из вторичных отстойников после аэротенков.
Биофильтры. Представляет собой круглый или прямоугольный в плане резервуар с двойным дном, наполненный фильтрующим материалом (котельный шлак, гранитный щебень, гравий, керамзит и др.). При прохождении сточной воды через фильтрующий материал на его поверхности образуется биологическая плёнка из скоплений бактерий, грибков, окисляющих и минерализующих органические вещества сточной воды. Окислительная мощность Б. определяется опытным путём.
Физико-химический. Для улучшения параметров очистки могут быть применены различные химические методы, как, например, дополнительная седиментация фосфора солями Fe и Al, хлорирование, озонирование, а также физико-химические методы, такие как электрофлотация.
Дезинфекция сточных вод.
Обработка ультрафиолетом.
Хлорирование. Проводится в течение 30 минут.
Биофильтры.
Использование дополнительных способов очистки вод.
Поля фильтрации, участки земли, приспособленные для естественной биологической очистки сточных вод путём фильтрации их через почвенные горизонты. Устраивают на песчаных, супесчаных и суглинистых почвах с хорошими фильтрационными свойствами. Состоят из участков (карт) с почти горизонтальной поверхностью площадью 0,5-2 га, огражденных валами высотой 0,8-1 м. Сточные воды, очищенные от механических примесей, жира, яиц гельминтов и пр., подаются в карту слоем 20-30 см (зимой намораживают до 75 см) по открытым каналам через водовыпуски и просачиваются через почву. Вода по дренам поступает в коллектор и сбрасывается в реку. После впитывания сточной жидкости поверхность карты перепахивают и снова заполняют. Частным случаем полей фильтрации являются ветленды.
Поля орошения. Участки земли, подготовленные для естественной биологической очистки сточных вод и выращивания с.-х. растений. Различают коммунальные – выполняют в основном санитарные функции, устройством почти не отличаются от полей фильтрации и земледельческие (сезонные – действуют летом, и круглогодовые) – устраиваются для выращивания с.-х. культур, потребляющих питательные вещества, содержащиеся в сточных водах, на землях колхозов и совхозов.
Почва
Основные методы рекультивации земель разработаны сравнительно давно и касаются вопросов почвозащитной обработки с помощью удобрений, внесения микроэлементов, снегозадержания и т.п. агротехническим мероприятиям. Внесение дополнительных веществ в почву осуществляется с учётом изначального химического состава почв. Другие методы:
Механический способ очистки включает в себя механический сбор нефтепродуктов с поверхности (экскавацию) и их последующую утилизацию на специальных полигонах. Недостатками этого метода являются неполная очистка загрязненного участка и высокая трудоемкость процесса.
Химический способ очистки представляет собой разложение нефтепродуктов с использованием химических реактивов или сжигание, для чего грунт необходимо предварительно изъять или собрать с помощью сорбентов, что также требует больших затрат.
Биологические способы очистки свободны от этих недостатков и представляют собой очистку грунтов с использованием специфичных бактериальных культур. Например, широко используется в настоящее время способ биологической очистки нефтезагрязненных почв, предполагающий внесение моно- и поликультур нефтеусваивающих микроорганизмов. Его целесообразно применять, с точки зрения получения наименьших ресурсозатрат, только для минеральных почв или в условиях интенсивной очистки почв на специально оборудованных технологических площадках. Существуют и другие биологические методы рекультивации загрязнённых земель. Например, активация аборигенной флоры почв и внесение органических и минеральных удобрений.
Другим интересующим нас направлением, относительно «молодым», уже показавшим свою перспективность, но еще имеющим очень большой потенциал для развития, стала очистка углеводородных (нефть и нефтепродукты) загрязнений с помощью растений. Выделяют четыре основных метода очистки загрязнений с помощью растений:
фитостабилизация;
фитодеградация;
фитоиспарение;
ризодеградация.
Фитостабилизация представляет собой накопление, или иммобилизацию растением загрязняющих веществ из почвы или грунтовых вод. При этом возможны различные механизмы процессов – абсорбция поллютантов корнями и накопление их в растении, адсорбция поллютантов в прикорневой зоне – ризосфере и (или) их осаждение там. К сожалению, из всех изучавшихся видов растений ни одно не показало сколь-либо значительного эффекта в отношении нефти и нефтепродуктов, хотя данный метод хорошо зарекомендовал себя для удаления из почвы и грунтовых вод тяжелых металлов.
Фитодеградация – «внутреннее» разрушение углеводородов растением – после поглощения разложение их в ходе метаболических процессов либо «внешнее», когда нефтепродукты разлагаются под действием корневых выделений. До настоящего времени было проведено всего несколько исследований за рубежом, в которых был получен положительный результат, т.е. была доказана возможность разрушения – разложения на безопасные составляющие растением нефти и нефтепродуктов. И, с одной стороны, это свидетельствует о перспективности развития данного направления очистки нефтяных загрязнений, а с другой – о необходимости проведения дальнейших исследований.
Фитоиспарение – способность растения поглощать нефть или нефтепродукты в процессе поддержания своего водного баланса, т.е. вместе с водой «выкачивать» из почвы загрязняющее вещество. Эта способность, хотя и может быть использована для очистки загрязнений, вместе с тем является полумерой, потому что в данном случае загрязняющее вещество выводится в атмосферу в процессе транспирации.
Более эффективным является очистка, когда растение совмещает способность к фитоиспарению и фитодеградации, тогда в воздух выводятся только безопасные продукты разложения нефтепродуктов.
В качестве объединяющего, промежуточного между вышеуказанными тремя свойствами является так называемый гидравлический контроль, когда растение получает доступ к грунтовым водам и потребляет вместе с влагой загрязняющее вещество. Впоследствии оно может либо разрушать, либо испарять загрязнитель.
Несколько особняком стоит способность растений к ризодеградации, еще называемой ризосферно усиленной биодеградацией или растительно усиленной биодеградацией. Принцип этого механизма состоит в том, что разложение загрязняющих углеводородов производится не непосредственном самим растением, а микроорганизмами, обитающими в непосредственной близости к его корням, т.е. в ризосфере. Роль растения заключается в значительном усилении эффективности работы микроорганизмов за счет биологически активных корневых выделений, хотя результаты отдельных исследований показали, что растения помимо стимуляции микробов могут и сами принимать непосредственное участие в разложении углеводородов.
Листья растения испаряют воду, тем самым выполняя функцию насоса, выкачивающего из почвы при помощи корней воду с растворенными в ней веществами. Углеводороды, из которых состоит нефть, абсорбируются на поверхности корней (что снижает подвижность и токсичность нефти), поглощаются корнями, поступают в надземные части растений, где разрушаются (деградируют), накапливаются или испаряются в атмосферу.
Растения находятся в тесном взаимодействии с микроорганизмами, заселяющими почву. Растительный организм в ходе фотосинтеза аккумулирует солнечную энергию в углеводах (сахарах). От 10% до 20% всей запасенной в процессе фотосинтеза энергии тратится растением на синтез и выделение веществ (сахара, спирты, органические кислоты) в прикорневую зону, что способствует развитию микроорганизмов. Поэтому непосредственно рядом с поверхностью корней в одном кубическом сантиметре содержится около 130 млрд. микроорганизмов, а на расстоянии 10см их присутствие падает до 20млрд. Важнейшим механизмом фиторемедиации почвы является биодеградация углеводородов нефти микроорганизмами, чье развитие стимулируется выделениями корней.
Технология фиторемедиации почвы, загрязненной нефтью, достаточно проста в применении, но требует высококвалифицированных специалистов. Она складывается из нескольких этапов:
Оценка характера загрязнения участка (химический состав разлива, степень проникновения нефти в почву, картирование).
Разработка оптимальной схемы фиторемедиации (подбор видового состава растений, которые оптимальным образом подходят для устранения данного типа загрязнения и соответствуют данным почвенно-климатическим условиям, определение схемы посадки, выбор необходимых агротехнических мероприятий, в т.ч. оптимизация питания и химическая защита растений).
Выращивание растений (проведение комплекса агротехнических мероприятий, в т.ч. подготовка семенного материала, подготовка почвы, внесение минеральных удобрений, использование средств защиты).
Мониторинг участка (определение концентрации и распространения химических компонентов нефти, отслеживание путей биодеградации нефти, проведение информационного анализа и прогнозирования).