Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Экологический мониторинг_Горшков М.В_ТГЭУ, 2010...doc
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
3.81 Mб
Скачать

5.1 Технологии очистки от загрязнений Воздух

Для очистки газопылевых выбросов применяют (в зависимости от степени запылённости):

  1. Для механической очистки сухим способом:

    • Сухие пылеуловители: циклоны, пылеосадительные камеры. Применяется для сухого удаления крупной и тяжёлой пыли. Принцип работы основан на оседании пыли вод действием центробежных сил и сил тяжести.

    • Электрофильтры (электростатические фильтры). Применяется для сухой очистки частиц мелкой пыли размером до 0,01 мкм (например, от копоти и табачного дыма). Принцип работы основан на ионизации газопылевого потока у поверхности коронирующих электродов, с последующим их осаждением на поверхность электрода.

  2. Для очистки твёрдых или газообразных сред от примесей в различных химико-технологических процессах мокрым способом применяют скрубберы. Способ основан на промывке газа жидкостью (обычно водой) при максимально развитой поверхности контакта жидкости с частицами аэрозоля и возможно более интенсивном перемешивании очищаемого газа с жидкостью. Данный метод позволяет удалить из газа частицы пыли, дыма, тумана и аэрозолей (обычно нежелательные или вредные) практически любых размеров. Выделяют:

    • Скрубберы насадочные;

    • Скрубберы центробежные;

    • Пенные аппараты;

    • Скрубберы Вентури.

  3. Для увлажнения воздуха применяют увлажнители. Идеальная относительная влажность в жилом помещении составляет 40-60 %, а зимой системы центрального отопления и другие обогревательные приборы приводят к пересушиванию воздуха до влажности 20-25 %. Выделяют:

    • Паровые увлажнители;

    • Ультразвуковые увлажнители.

  4. Для биологической очистки применяются ионизаторы воздуха эритемными лампами с бактерицидным эффектом.

Вода

Очищение воды происходит в несколько этапов:

  1. Механический. Производится предварительная очистка поступающих на очистные сооружения сточных вод с целью подготовки их к биологической очистке. На данном этапе происходит задержание нерастворимых примесей. Основные сооружения:

    • Решётки (или УФС – устройство фильтрующее самоочищающееся) и сита. Служат для задержания крупных загрязнений органического и минерального происхождения. Максимальная ширина прозоров решётки составляет 16 мм.

    • Песколовки. Служат для выделения мелких тяжёлых минеральных частиц (песок, шлак, бой стекла т. п.) путём осаждения. Также применяются жироловки, в которых происходит удаление с поверхности воды гидрофобных веществ путём флотации (процесс разделения мелких твёрдых частиц (главным образом, минералов), основанный на различии их в смачиваемости водой).

    • Мембранные элементы. Основаны на применении искусственных мембран, т.е. жестких селективно-проницаемых перегородок, разделяющих массообменный аппарат на две рабочие зоны, в которых поддерживаются различные давления и составы разделяемой смеси.

    • Первичные отстойники. Предназначены для осаждения взвесей.

  2. Биологический. На данном этапе происходит минерализация сточных вод, удаление органического азота и фосфора, главной целью является снижение БПК5. Биологическая очистка предполагает деградацию органической составляющей сточных вод микроорганизмами (бактериями и простейшими). Сооружения для очистки:

    • Аэротенки (активный ил). Представляет собой бетонный или железобетонный проточный резервуар, разделённый перегородками на ряд коридоров (ширина коридоров 8-10 м, высота 4-5 м, длина до 150 м). Коридоры оснащены аэраторами, через которые подаётся воздух для снабжения кислородом искусственно вносимого активного ила и его перемешивания со сточными водами. Жидкая смесь, протекая по аэротенкам, очищается в результате окисления содержащихся в ней органических загрязнений микроорганизмами активного ила. Продолжительность пребывания сточной жидкости в них 6-12 ч.

    • Метантенки (анаэробное брожение). Распад органических веществ протекает в 2 фазы. В первой фазе из углеводов, жиров и белков образуются жирные кислоты, водород, аминокислоты и пр. Во второй – происходит разрушение кислот с образованием преимущественно метана и углекислого газа. В М. подаётся обычно смесь сырого (свежего) осадка из первичных отстойников и избыточный активный ил из вторичных отстойников после аэротенков.

    • Биофильтры. Представляет собой круглый или прямоугольный в плане резервуар с двойным дном, наполненный фильтрующим материалом (котельный шлак, гранитный щебень, гравий, керамзит и др.). При прохождении сточной воды через фильтрующий материал на его поверхности образуется биологическая плёнка из скоплений бактерий, грибков, окисляющих и минерализующих органические вещества сточной воды. Окислительная мощность Б. определяется опытным путём.

  3. Физико-химический. Для улучшения параметров очистки могут быть применены различные химические методы, как, например, дополнительная седиментация фосфора солями Fe и Al, хлорирование, озонирование, а также физико-химические методы, такие как электрофлотация.

  4. Дезинфекция сточных вод.

    • Обработка ультрафиолетом.

    • Хлорирование. Проводится в течение 30 минут.

    • Биофильтры.

  5. Использование дополнительных способов очистки вод.

    • Поля фильтрации, участки земли, приспособленные для естественной биологической очистки сточных вод путём фильтрации их через почвенные горизонты. Устраивают на песчаных, супесчаных и суглинистых почвах с хорошими фильтрационными свойствами. Состоят из участков (карт) с почти горизонтальной поверхностью площадью 0,5-2 га, огражденных валами высотой 0,8-1 м. Сточные воды, очищенные от механических примесей, жира, яиц гельминтов и пр., подаются в карту слоем 20-30 см (зимой намораживают до 75 см) по открытым каналам через водовыпуски и просачиваются через почву. Вода по дренам поступает в коллектор и сбрасывается в реку. После впитывания сточной жидкости поверхность карты перепахивают и снова заполняют. Частным случаем полей фильтрации являются ветленды.

    • Поля орошения. Участки земли, подготовленные для естественной биологической очистки сточных вод и выращивания с.-х. растений. Различают коммунальные – выполняют в основном санитарные функции, устройством почти не отличаются от полей фильтрации и земледельческие (сезонные – действуют летом, и круглогодовые) – устраиваются для выращивания с.-х. культур, потребляющих питательные вещества, содержащиеся в сточных водах, на землях колхозов и совхозов.

Почва

Основные методы рекультивации земель разработаны сравнительно давно и касаются вопросов почвозащитной обработки с помощью удобрений, внесения микроэлементов, снегозадержания и т.п. агротехническим мероприятиям. Внесение дополнительных веществ в почву осуществляется с учётом изначального химического состава почв. Другие методы:

  1. Механический способ очистки включает в себя механический сбор нефтепродуктов с поверхности (экскавацию) и их последующую утилизацию на специальных полигонах. Недостатками этого метода являются неполная очистка загрязненного участка и высокая трудоемкость процесса.

  2. Химический способ очистки представляет собой разложение нефтепродуктов с использованием химических реактивов или сжигание, для чего грунт необходимо предварительно изъять или собрать с помощью сорбентов, что также требует больших затрат.

  3. Биологические способы очистки свободны от этих недостатков и представляют собой очистку грунтов с использованием специфичных бактериальных культур. Например, широко используется в настоящее время способ биологической очистки нефтезагрязненных почв, предполагающий внесение моно- и поликультур нефтеусваивающих микроорганизмов. Его целесообразно применять, с точки зрения получения наименьших ресурсозатрат, только для минеральных почв или в условиях интенсивной очистки почв на специально оборудованных технологических площадках. Существуют и другие биологические методы рекультивации загрязнённых земель. Например, активация аборигенной флоры почв и внесение органических и минеральных удобрений.

Другим интересующим нас направлением, относительно «молодым», уже показавшим свою перспективность, но еще имеющим очень большой потенциал для развития, стала очистка углеводородных (нефть и нефтепродукты) загрязнений с помощью растений. Выделяют четыре основных метода очистки загрязнений с помощью растений:

  • фитостабилизация;

  • фитодеградация;

  • фитоиспарение;

  • ризодеградация.

Фитостабилизация представляет собой накопление, или иммобилизацию растением загрязняющих веществ из почвы или грунтовых вод. При этом возможны различные механизмы процессов – абсорбция поллютантов корнями и накопление их в растении, ­адсорбция поллютантов в прикорневой зоне – ризосфере и (или) их осаждение там. К сожалению, из всех изучавшихся видов растений ни одно не показало сколь-либо значительного эффекта в отношении нефти и нефтепродуктов, хотя данный метод хорошо зарекомендовал себя для удаления из почвы и грунтовых вод тяжелых металлов.

Фитодеградация – «внутреннее» разрушение углеводородов растением – после поглощения разложение их в ходе метаболических процессов либо «внешнее», когда нефтепродукты разлагаются под действием корневых выделений. До настоящего времени было проведено всего несколько исследований за рубежом, в которых был получен положительный результат, т.е. была доказана возможность разрушения – разложения на безопасные составляющие растением нефти и нефтепродуктов. И, с одной стороны, это свидетельствует о перспективности развития данного направления очистки нефтяных загрязнений, а с другой – о необходимости проведения дальнейших исследований.

Фитоиспарение – способность растения поглощать нефть или нефтепродукты в процессе поддержания своего водного баланса, т.е. вместе с водой «выкачивать» из почвы загрязняющее вещество. Эта способность, хотя и может быть использована для очистки загрязнений, вместе с тем является полумерой, потому что в данном случае загрязняющее вещество выводится в атмосферу в процессе транспирации.

Более эффективным является очистка, когда растение совмещает способность к фитоиспарению и фитодеградации, тогда в воздух выводятся только безопасные продукты разложения нефтепродуктов.

В качестве объединяющего, промежуточного между вышеуказанными тремя свойствами является так называемый гидравлический контроль, когда растение получает доступ к грунтовым водам и потребляет вместе с влагой загрязняющее вещество. Впоследствии оно может либо разрушать, либо испарять загрязнитель.

Несколько особняком стоит способность растений к ризодеградации, еще называемой ризосферно усиленной биодеградацией или растительно усиленной биодеградацией. Принцип этого механизма состоит в том, что разложение загрязняющих углеводородов производится не непосредственном самим растением, а микроорганизмами, обитающими в непосредственной близости к его корням, т.е. в ризосфере. Роль растения заключается в значительном усилении эффективности работы микроорганизмов за счет биологически активных корневых выделений, хотя результаты отдельных исследований показали, что растения помимо стимуляции микробов могут и сами принимать непосредственное участие в разложении углеводородов.

Листья растения испаряют воду, тем самым выполняя функцию насоса, выкачивающего из почвы при помощи корней воду с растворенными в ней веществами. Углеводороды, из которых состоит нефть, абсорбируются на поверхности корней (что снижает подвижность и токсичность нефти), поглощаются корнями, поступают в надземные части растений, где разрушаются (деградируют), накапливаются или испаряются в атмосферу.

Растения находятся в тесном взаимодействии с микроорганизмами, заселяющими почву. Растительный организм в ходе фотосинтеза аккумулирует солнечную энергию в углеводах (сахарах). От 10% до 20% всей запасенной в процессе фотосинтеза энергии тратится растением на синтез и выделение веществ (сахара, спирты, органические кислоты) в прикорневую зону, что способствует развитию микроорганизмов. Поэтому непосредственно рядом с поверхностью корней в одном кубическом сантиметре содержится около 130 млрд. микроорганизмов, а на расстоянии 10см их присутствие падает до 20млрд. Важнейшим механизмом фиторемедиации почвы является биодеградация углеводородов нефти микроорганизмами, чье развитие стимулируется выделениями корней.

Технология фиторемедиации почвы, загрязненной нефтью, достаточно проста в применении, но требует высококвалифицированных специалистов. Она складывается из нескольких этапов:

  1. Оценка характера загрязнения участка (химический состав разлива, степень проникновения нефти в почву, картирование).

  2. Разработка оптимальной схемы фиторемедиации (подбор видового состава растений, которые оптимальным образом подходят для устранения данного типа загрязнения и соответствуют данным почвенно-климатическим условиям, определение схемы посадки, выбор необходимых агротехнических мероприятий, в т.ч. оптимизация питания и химическая защита растений).

  3. Выращивание растений (проведение комплекса агротехнических мероприятий, в т.ч. подготовка семенного материала, подготовка почвы, внесение минеральных удобрений, использование средств защиты).

  4. Мониторинг участка (определение концентрации и распространения химических компонентов нефти, отслеживание путей биодеградации нефти, проведение информационного анализа и прогнозирования).