
- •1.1 Теоретические основы контроля.
- •1.1.1 Виды и методы измерений
- •1.1.2 Методы и средства измерений технологических параметров.
- •1.1.3 Погрешности измерений, виды погрешностей, понятие о классе точности прибора, поверка приборов прямым и обратным ходом. Вариация показаний прибора.
- •1.1.4 Методы контроля в гибких производственных система
- •Тема 1.2 Системы технологического контроля.
- •1.2.1 Системы технологического контроля, принципы построения схем контроля.
- •1.2.2 Типовые структуры измерительных систем.
- •1.2.3. Типовые структурные схемы измерительных преобразователей
- •1.2.4 Методы и средства измерений технологических параметров полупроводников.
- •1.2.5 Измерение электрических величин.
- •1.2.6 Электрические измерения неэлектрических величин
- •1.2.7 Принцип действия, устройство и конструктивные особенности средств измерения.
- •1.2.8 Измерительные преобразователи и схемы.
- •1.2.9 Структуры и схемы дистанционной передачи информации.
- •1.2.10 Аналоговые и цифровые вторичные приборы для контроля технологических параметров.
- •1.2.11 Использование информационных вычислительных комплексов в системах контроля.
- •1.2.12 Организация щитов управления. Назначение и классификация информационных устройств, применяемых в мехатронике.
- •1.2.13 Назначение и классификация информационных устройств, применяемых в мехатронике.
- •1.2.14 Погрешности измерительных систем, погрешности системы управления.
- •1.2.15 Измерение механических величин.
- •Средства поверки
- •3. Условия и подготовка к поверке
- •4. Проведение поверки
- •Цель работы: Определить соответствие поверяемого манометра классу точности. Ход работы: Теоретические сведения. Требования к приборам для измерения давления и их классификация.
- •Механические приборы для измерения давления.
- •Цель работы: Провести поверку дифференциально-трансформаторного датчика в комплексе с вторичным прибором . Ход работы: Теоретические сведения.
- •Ход работы: Теоретические сведения.
- •Основные понятия
- •Ход работы: Теоретические сведения.
- •Ход работы: Теоретические сведения.
- •1.59. Схема комплекта кондуктометра
- •Тема 1.3 Выбор законов регулирования на объектах, расчет и установка параметров настройки регуляторов.
- •1.3.1. Автоматическая система управления и её элементы.
- •1.3.2.Разработка асу.
- •1.3.3. Математическое описание автоматических систем управления мехатронных устройств и систем.
- •1.3.5. Законы регулирования и способы их формирования в системах управления.
- •1.3.6. Анализ и синтез одноконтурной системы автоматического регулирования.
- •1.3.7. Формирования пи-закона регулирования.
- •1.3.8. Устойчивость и качество систем автоматического управления и мехатронных систем.
- •1.3.9. Выбор закона управления и расчет настроек автоматического регулятора и мехатронного устройства.
- •1.3.10. Определение динамических параметров объекта по кривой разгона.
- •Тема 1.4 Использование элементов автоматики для конкретной системы управления.
- •Классификация систем автоматического управления.
- •Статические характеристики элементов сау.
- •Этапы проектирования мехатронной системы.
- •1.4.2. Функциональные элементы. Назначение, типы, принцип действия задающих устройств.
- •Устройства задающие зу-11, зу-05, зу-50
- •1.4.3. Назначение, схемы, принцип работы, устройство блоков управления, ключей и переключателей.
- •1. Назначение
- •2.Устройство
- •1.4.4. Использование, устройство, схемы, работа функциональных блоков статического и динамического преобразования сигнала.
- •1.4.5. Методы управления электроприводами. Понятие об электроприводе
- •1.4.6. Типовые узлы схем автоматического управления электроприводами переменного и постоянного тока.
- •1.4.7 Основные схемы узлов статорных цепей асинхронных двигателей с короткозамкнутым ротором. Узлы пусковых роторных сопротивлений асинхронных машин.
- •1.4.8. Суэп переменного тока с тиристорным преобразователем напряжения.
- •1.4.9. Суэп асинхронного электропривода с преобразователями частоты.
- •1.4.10. Принципы построения систем управления положением. Системы управления положением исполнительного органа.
- •1.4.11. Системы управления элеватором Описание технологического процесса.
- •1.4.12 Системы управления приемом зерна.
- •1.4.13. Системы управления зерноочистительным отделением.
- •1.4.14. Системы управления размольным отделением.
- •1.4.15 Системы управления складов готовой продукции.
- •1.4.16. Системы управления комбикормовым заводом.
- •Эффект от внедрения
- •Функции асу тп
- •Программное обеспечение
- •Аппаратное обеспечение
- •Основные технические характеристики
- •Стадии создания системы
- •Качество продукции и услуг
- •Тема 1.5. Применение программируемых микропроцессорных контроллеров.
- •Приложения
- •Размеры графических условных обозначений приборов и средств автоматизации по гост 21. 404-85.
- •Примеры построения условных обозначений по гост 21.404 – 85.
- •Буквенные условные обозначения по гост 21. 404-85
- •Дополнительные обозначения, отражающие функциональные признаки преобразователей сигналов и вычислительных устройств по гост 21. 404-85
Механические приборы для измерения давления.
Механические приборы получили наибольшее распространение, так как они характеризуются следующими преимуществами: простотой устройства и использования, портативностью, универсальностью, практически неограниченным диапазоном измерения, начиная от нескольких килопаскалей и до сотен мегапаскалей.
По типу упругих элементов, применяемых для измерения давления, механические приборы подразделяются на пружинные, мембранные и сильфонные.
Манометры с одновитковой пружиной. Пружинные приборы появились на двести лет позднее жидкостных (1846–1848). Основной деталью пружинных манометров является полая трубка с поперечным сечением в виде овала или эллипса. По имени автора одного из первых манометров такая трубка называется еще трубкой Бурдона (рис. 1.47).
Один конец трубки заканчивается ниппелем с резьбой для подключения к сосуду, в котором измеряется давление, а второй запаян. Свободный запаянный конец трубчатой пружины при помощи тяги шарнирно соединяется с зубчатым сектором, находящимся в зацеплении с маленькой шестеренкой (трибкой). На ось трибки насажена стрелка, которая указательным концом подходит к шкале, нанесенной на циферблате.
Если манометр присоединить к полости с избыточным давлением, то силы давления в трубке несколько распрямляют ее, свободный конец трубки при этом перемещается, тяга поворачивает зубчатый сектор и находящуюся с ним в зацеплении трибку. По положению стрелки на шкале судят о величине измеряемого давления.
Трубчатые вакуумметр и мановакуумметр. Трубчатая пружина может быть использована и в вакуумметре, т. е. приборе для измерения разрежения (отрицательного избыточного давления).
Если пружину соединить с пространством, в котором имеет место разрежение, то под действием внешнего атмосферного давления она будет деформироваться. Причем свободный конец будет перемещаться не вверх, как у манометра, а вниз. Соответственно и стрелка будет поворачиваться в противоположную сторону.
Шкала вакуумметра может размечаться в миллиметрах ртутного столба. Предельное значение шкалы (760 мм рт. ст.) наносится условно, так как полный вакуум практически не достижим.
Если в одном и том же месте по условиям работы установки возможно и избыточное давление, и вакуум, то используется комбинированный прибор, называемый мановакуумметром. Предельное значение шкалы манометрического давления может быть любым и зависит лишь от использованной в данном манометре трубки. Зная, на какое избыточное давление рассчитана трубка мановакуумметра, можно найти соотношение между длинами манометрической и вакуумметрической шкал. Так, если манометрическая шкала рассчитана на 1,0 МПа, вакуумметрическая шка
ла
будет занимать
от
шкалы давления, если на 2,0
МПа, то
и
т. д., чем больше избыточное давление, на
которое ассчитан мановакуумметр,
тем меньше
размер вакуумметрической шкалы и ниже
точность измерения вакуума.
Манометры
с многовитковой трубчатой пружиной
являются, как прав
ило,
регистрирующими манометрами (рис. 1.48).
Рис.1.48. Манометры с многовитковой трубчатой пружиной.
Чувствительным элементом в них является многовитковая пружина, которая представляет собой полую трубку овального сечения с 5–9 витками, расположенными по винтовой линии. Диаметр пружины 30 мм. Многовитковая пружина длиннее одновитковой, поэтому ее свободный конец при том же давлении перемещается значительно больше. При максимальном давлении по шкале прибора пружина раскручивается на угол 50о. К неподвижному концу пружины припаивается капиллярная трубка, соединенная с ниппелем, для подключения к сосуду, в котором измеряется давление. Свободный конец трубчатой пружины припаивается к гибкой в радиальном направлении соединительной скобе, связывающей гибкую пружину с осью. На ось крепится рычаг с кареткой, которая через тягу и рычаг воздействует на мостик с укрепленной на нем стрелкой.
Манометр мембранный. В качестве упругих элементов в манометрах часто применяют мембраны или мембранные коробки (рис. 1.49).
Рис. 1.49. Манометр с пластинчатой мембраной: 1 – ниппель; 2 – мембрана; 3 – фланцы; 4 – стержень; 5 – тяга; 6 – сектор; 7 – трибка; 8 – стрелка; 9 – шкала.
На нижнем фланце манометра имеется ниппель для подключения к сосуду, в котором измеряется давление. Верхний фланец составляет одно целое с корпусом манометра. Между фланцами находится гофрированная мембрана. Фланцы плотно стянуты болтами. В центре мембраны закреплена стойка, шарнирно соединенная с зубчатым сектором передаточного механизма. По величине деформации мембраны судят о давлении. Мембраны для измерения различных давлений отличаются толщиной, диаметром, видом материала. Пределы измеряемых давлений для мембранных манометров ограничены и составляют от 20 кПа до 30 МПа. Мембранные манометры используют при измерении давлений в высоковязких средах рис 1.50, Манометр многовитковый с трубчатой пружиной так как прямой и широкий канал в ниппеле обеспечивает более свободный проход жидкости, чем в трубчатом манометре. Для измерений в химически агрессивных средах нижнюю сторону мембраны покрывают тонкой пленкой защитного материала.
Рис. 1.50. Манометр многовитковый с трубчатой пружиной: 1 – капиллярная трубка; 2 – пружина; 3 – втулка; 4 – ось; 5 – рычаг; 6 – каретка; 7 – тяга; 8 – поводок; 9 – мостик; 10 – держатель пера; 11, 12 – концы пружины
Принцип действия мембранного манометра позволяет использовать его и для измерения разрежения. Если мембранный манометр присоединить к полости с разрежением, то мембрана, испытывая атмосферное давление снаружи, будет прогибаться внутрь, что вызывает поворот стрелки в сторону, обратную по сравнению с манометром.
Сильфонный манометр. Сильфонные приборы для измерения давления являются еще одной разновидностью механических приборов.
Рис.1.51.Сильфонный самопишущий манометр с рычажным передаточным механизмом: 1 – поводок; 2 – втулка; 3 – стержень; 4 – сильфон; 5– пружина; 6 – кожух сильфона; 7 – штуцер; 8 – гнездо; 9 – дно сильфона; 10 – основание сильфона
В качестве упругого элемента в них используется сильфон, который представляет собой гофрированную коробку, выполненную в виде цилиндра с равномерными складками (гофрами) (рис. 1.51). Если такой сильфон подвергнуть действию избыточного давления снаружи или изнутри, то он сожмется или растянется по высоте так, что его горизонтальные поверхности будут перемещаться параллельно самим себе. Величина перемещения пропорциональна величине измеряемого давления. Сильфонные манометры применяются для измерения давлений от 40 кПа до 0,5 МПа. Изменение пределов измерения достигается за счет толщины мембраны, диаметра и размера гофр, а также жесткостью винтовой пружины, размещенной внутри полости сильфона.
Лабораторная работа № 10 «Поверка дифференциально-трансформаторного датчика в комплексе с вторичным прибором»