
- •Первичные и вторичные метаболиты, первичные и вторичный метаболизм. Основные направления в изучении вторичного метаболизма
- •3 Принципы классификации.Эмпирическая, химическая, биохимическая и функциональная классификация вторичных метаболитов. Основные группы вторичных метаболитов.
- •4 Методы разделения и обнаружения вторичных метаболитов
- •5 Выделение, идентификация и определение содержания в растениях гликозидов
- •6 Выделение из растений эфирных масел
- •7 Химическая классификация алкалойдов. Протоалкалойды, псевдоалкалойды,истинные алкалойды. Биохимическая классификация алкалойдов. Основные группы истинных алкалойдов
- •8 Распространение алкалойдов среди растений. Содержание алкалойдов в органах и тканях растений.
- •В растениях алкалоиды находятся
- •9 Типичные пред-ли алкалоидов и использование
- •11 Распространение изопренойдов среди растений. Содержание в органах и тканях растений.
- •12Эфирные масла и их использование
- •14Фенольные соединения фенолы и полифенолы классификация соединений.
- •Основные группы фенольных соединений с одним ароматическим кольцом. Распространение и основные предстАвители.
- •16.Фенольные соединения с двумя ароматическими кольцами. Распространение и основные представители.
- •17.Полимерные фенольные соединения (полифенолы). Распространения и основные представители
- •18 Минорные классы вторичных метаболитов . Небелковые аминокислоты.
- •19 Минорные классы вторичных метаболитов . Гликозиды ,классификация ,распространение , основные предстовители , физиологическое значение
- •20 Минорные классы вторичных метаболитов . Растительные амины ,необычные липиды (жирные кислоты, цианолипиды),беталаины ,полиацетиленовые производные , алкамиды ,теофены.
- •21 Хемосистематика как раздел систематики растений ,прогностическая ценность вторичных метаболитов для хемосистематики растений.
- •22 Значение изучения распространения отдельных веществ и их групп по системе растений, причины изменчивости химического состава растений.
- •23 Динамичность накопления вторичных метаболитов;влияния условий произрастания на накопление растениями вторичных метаболитов.
- •24 Наследственная изменчивость накопления, эволюция ферментных систем вторичного метаболизма.
- •25 Уровень накопления вторичных метаболитов как таксономический маркер, унифицирование методик экстракции и анализа
- •26 Биосинтез алкалойдов
- •27 Биосинтез изопренойдов
- •28 Биосинтез фенольных соединений.
- •30. Внутриклеточная локализация синтеза вторичных метаболитов
- •31. Локализация в тканях синтеза вторичных метаболитов
- •33 Состав и характеристика смол, слизей, камеди, латекса
- •34. Функции вторичных метаболитов. Основные гипотезы
- •35. . Принципы классификации вторичных метаболитов
- •36 Группы защитных соединений растений. Классификация.
- •37. Характеристика конститутивных защитных соединений растений
- •38. Полуиндуцибельные защитные соединения растений. Система конститутивных и полуиндуцибельных защитных соединений
- •41 Регуляция синтеза вторичных метаблитов к культуре клеток.
30. Внутриклеточная локализация синтеза вторичных метаболитов
Вторичные метаболиты могут находиться в различных частях клетки, ткани, органа растения.
Внутриклеточная локализация. Вторичные метаболиты, как правило, накапливаются в «метаболически неактивных» компартментах клетки — вакуолях и периплазматическом пространстве (клеточной стенке), но синтез их проходит обычно в других компартментах — чаще всего в цитозоле, ЭР и хлоропластах. Таким образом, в клетке синтез и накопление вторичных метаболитов пространственно разобщены; после синтеза должен происходить их транспорт по секреторному пути.
Места синтеза и накопления вторичных метаболитов различны для разных классов соединений. Алкалоиды накапливаются, как правило, в вакуолях, а в периплазматическое пространство практически не поступают. Возможно, это является следствием «бережного отношения» растения к азотсодержащим соединениям. Транспорт алкалоидов в вакуоли проходит с участием специфичных переносчиков (видимо, ABC-транспортеров). Во всяком случае в изолированные вакуоли эффективно поступают только «собственные» алкалоиды, т.е. характерные для данного растения. В вакуолях алкалоиды обычно находятся в виде солей. Синтез алкалоидов проходит преимущественно в пластидах (например, хинолизидновых) либо в цитозоле (чаще всего ЭР).
^ Изопреноидные вторичные метаболиты, в отличие от алкалоидов, обычно после синтеза выводятся из клетки. Помимо клеточной стенки, они могут иногда накапливаться в вакуолях. Синтез изопреноидов может проходить в двух компартментах — в пластидах или в цитозоле. При этом существуют два независимых пути синтеза изопреноидов: мевалонатный — в цитоплазме, альтернативный — в пластидах. «Пластидный» синтез изопреноидов часто осуществляется в лейкопластах — специализированных «изопреноидных» пластидах, которые имеют ряд морфологических особенностей (например, отсутствие рибосом, особое расположение внутренних мембран). Для них характерны тесные контакты с ЭР («ретикулярный футляр»), что косвенно указывает на взаимодействие пластид и ЭР при синтезе изопреноидов.
Фенольные соединения накапливаются как в вакуолях, так и в периплазматическом пространстве. При этом в вакуолях обычно содержатся гликозилированные фенольные соединения, тогда как в периплазматическом пространстве — метаксилированные соединения или агликоны. Синтез фенольных соединений происходит в хлоропластах и цитозоле. Показано существование двух независимых путей синтеза ароматических соединений (шикиматные пути) — в цитозоле и в пластидах.
Многие соединения других классов вторичных метаболитов также накапливаются в вакуолях. Подобную локализацию имеют, например, цианогенные гликозиды, глюкозинолаты, беталаины.
31. Локализация в тканях синтеза вторичных метаболитов
Локализация в тканях. Вторичные метаболиты могут быть равномерно распределены по клеткам ткани, однако это бывает достаточно редко. Гораздо чаще они накапливаются в ткани неравномерно, при этом для их локализации могут быть использованы разные структуры. В наиболее простых случаях соединения накапливаются в специализированных клетках — идиобластах. Идиобласты, накапливающие разные вторичные метаболиты, могут иметь характерные особенности. Например, идиобласты, накапливающие алкалоиды у руты (Ruta graveolens) содержат большое количество мелких вакуолей. В идиобластах, содержащих таннины, вакуоль занимает почти весь объем клетки. Изопреноидсодержащие идиобласты часто характеризуются сильно развитым гладким ЭР. Идиобласты, накапливающие вторичные метаболиты, могут находиться в различных тканях растения, однако чаще всего они присутствуют в покровных тканях. Например, в эпидермальных тканях листа и стебля разных видов найдены идиобласты, накапливающие фуростаноловые гликозиды, стероидные гликоалкалоиды, хинолизидиновые алкалоиды.
Довольно часто вторичные метаболиты локализуются в тканях в специализированных структурах — ходах, каналах, млечниках. Эти структуры разделяются на две группы — производные внеклеточного пространства и производные вакуоли. Можно сказать, что на уровне тканей сохраняется «клеточный» принцип накопления вторичных метаболитов — в периплазматическом пространстве и в вакуолях.
Смоляные ходы, камедиевые и масляные каналы (протоки) представляют собой внеклеточные структуры. Они могут образовываться схизогенно (за счет увеличения межклетников) либо лизогенно (за счет гибели и лизиса некоторых клеток). Вторичные метаболиты (например, терпеноиды — компоненты эфирных масел и смол) синтезируются в клетках, выстилающих ходы и каналы, а затем и секретируются в них.
Млечники, производные вакуолярной системы растений, имеются как минимум у представителей 20 семейств высших растений. Содержимое млечников — латекс — фактически является вакуолярным соком и представляют собой эмульсию, содержащую алкалоиды, изопреноиды и ряд других соединений вторичного и первичного метаболизма.
Таким образом, на уровне тканей можно проследить закономерность, аналогичную клеточной: разделение мест синтеза и накопления вторичных метаболитов.
Установить общие закономерности локализации вторичных метаболитов по органам растений, по-видимому, невозможно. Она зависит от вида растения, условий окружающей среды, типа вторичного метаболита и, вероятно, главное — от его физиологической функции. Вторичные метаболиты могут синтезироваться и накапливаться во всех органах растений. Например, эфирные масла могут накапливаться в лепестках цветков (роза), плодах (анис, кориандр), корнях (валериана, девясил), листьях (мята, шалфей). Сердечные гликозиды могут находиться в листьях (олеандр, наперстянка), коре (обвойник), семенах (строфант), цветках (ландыш). В то же время закономерность разделения мест синтеза и накопления вторичных метаболитов часто наблюдается и на уровне органов и целого растения. Например, стероидные гликозиды диоскореи (Dioscorea deltoidea) синтезируются в листьях интактного растения и с флоэмным током транспортируются по растению преимущественно в эпидермальные ткани и корневище. В эпидермисе листьев и стеблей они локализуются в идиобластах. Основная масса гликозидов накапливается в корневище (до 8 % от сухой массы). Похожая ситуация наблюдается для хинолизидиновых алкалоидов.
Достаточно часто вторичные метаболиты выделяются растением в окружающую среду. Для этого существуют различные механизмы и морфологические структуры. Простейшей системой выделения вторичных метаболитов можно считать железистый эпидермис с железистыми пятнами. Железистые пятна используются для выделения эфирных масел и представляют собой его скопления под кутикулой. Моно- и сесквитерпеноиды, составляющие основной компонент эфирного масла, синтезируются отдельными группами клеток, мозаично расположенными в железистом эпидермисе. Образовавшееся эфирное масло скапливается под кутикулой в виде железистого пятна, а затем выделяется в окружающую среду. Такой способ выделения эфирных масел характерен для розы, ландыша, почек тополя.
Более сложными секреторными структурами являются железистые волоски (трихомы) и железки. Они состоят из базальной клетки, одно- или многоклеточной ножки и головки. Одноклеточная головка характерна для трихом, многоклеточная — для железок. Количество железистых волосков может достигать десятков тысяч на лист.
По-видимому, все клетки трихом и железок способны к синтезу и выделению эфирных масел. Трихомы и железки являются достаточно универсальными
выделительными структурами и могут использоваться для выделения не только эфирных масел. В различных видах растений они могут осуществлять выделение дитерпеноидов, фенольных соединений и некоторых других вторичных метаболитов. Выделение в наружную среду для алкалоидов не характерно.
32.Локализация в органах.
она зависит от вида растения, усл. окр. среды, типа ВМ, от его физиолог. функций.ВМ могут накапливат. в лепестках, плодах(анис), корнях(валериана), листьях(мята). Сердечные гликозиды-в листьях(олеандр), коре, семенах, цветках(ландыш). Стероидные гликозиды синтез. в листьях интактных раст. и с и с флоэмным током транспортир. в эпидерм. ткани корневище. В эпидермисе листьев и стеблей локализов. в идиобластах, осн. маса гликозидов в корневище до 8% от сух. массы. Часто ВМ выдел. растениями в окр. среду. Прост. система выделен. ВМ-железист. эпидермис с железист. пятнами. Желез. пятна-выдел. эф. масла. Моно и сесквитерпен. сост. основной компонент эфир. масла, синтез. отдельные группы клеток, мозаично располож. в жел. эпидермисе. Обр-ся эф. масло скапливается под кутикулой в виде жел. пятен и выдел. в окр. среду. Это характерно для розы, ландыша. Бол. слож. секрет.структуры-секрет. волоски и железки. Сост. из базал. клетки, ножки и головки. 1 клеточн головка для трихом, многоклет. для железок. Трихомы и железки универсал. выделит. структуры и использ. не только для эф. масел, но и для выдел. дитерпеноидов и др. ВМ.