
- •Первичные и вторичные метаболиты, первичные и вторичный метаболизм. Основные направления в изучении вторичного метаболизма
- •3 Принципы классификации.Эмпирическая, химическая, биохимическая и функциональная классификация вторичных метаболитов. Основные группы вторичных метаболитов.
- •4 Методы разделения и обнаружения вторичных метаболитов
- •5 Выделение, идентификация и определение содержания в растениях гликозидов
- •6 Выделение из растений эфирных масел
- •7 Химическая классификация алкалойдов. Протоалкалойды, псевдоалкалойды,истинные алкалойды. Биохимическая классификация алкалойдов. Основные группы истинных алкалойдов
- •8 Распространение алкалойдов среди растений. Содержание алкалойдов в органах и тканях растений.
- •В растениях алкалоиды находятся
- •9 Типичные пред-ли алкалоидов и использование
- •11 Распространение изопренойдов среди растений. Содержание в органах и тканях растений.
- •12Эфирные масла и их использование
- •14Фенольные соединения фенолы и полифенолы классификация соединений.
- •Основные группы фенольных соединений с одним ароматическим кольцом. Распространение и основные предстАвители.
- •16.Фенольные соединения с двумя ароматическими кольцами. Распространение и основные представители.
- •17.Полимерные фенольные соединения (полифенолы). Распространения и основные представители
- •18 Минорные классы вторичных метаболитов . Небелковые аминокислоты.
- •19 Минорные классы вторичных метаболитов . Гликозиды ,классификация ,распространение , основные предстовители , физиологическое значение
- •20 Минорные классы вторичных метаболитов . Растительные амины ,необычные липиды (жирные кислоты, цианолипиды),беталаины ,полиацетиленовые производные , алкамиды ,теофены.
- •21 Хемосистематика как раздел систематики растений ,прогностическая ценность вторичных метаболитов для хемосистематики растений.
- •22 Значение изучения распространения отдельных веществ и их групп по системе растений, причины изменчивости химического состава растений.
- •23 Динамичность накопления вторичных метаболитов;влияния условий произрастания на накопление растениями вторичных метаболитов.
- •24 Наследственная изменчивость накопления, эволюция ферментных систем вторичного метаболизма.
- •25 Уровень накопления вторичных метаболитов как таксономический маркер, унифицирование методик экстракции и анализа
- •26 Биосинтез алкалойдов
- •27 Биосинтез изопренойдов
- •28 Биосинтез фенольных соединений.
- •30. Внутриклеточная локализация синтеза вторичных метаболитов
- •31. Локализация в тканях синтеза вторичных метаболитов
- •33 Состав и характеристика смол, слизей, камеди, латекса
- •34. Функции вторичных метаболитов. Основные гипотезы
- •35. . Принципы классификации вторичных метаболитов
- •36 Группы защитных соединений растений. Классификация.
- •37. Характеристика конститутивных защитных соединений растений
- •38. Полуиндуцибельные защитные соединения растений. Система конститутивных и полуиндуцибельных защитных соединений
- •41 Регуляция синтеза вторичных метаблитов к культуре клеток.
Первичные и вторичные метаболиты, первичные и вторичный метаболизм. Основные направления в изучении вторичного метаболизма
Под метаболизмом, или обменом веществ, понимают совокупность химических реакций в организме, обеспечивающих его веществами для построения тела и энергией для поддержания жизнедеятельности. Часть реакций оказывается сходной для всех живых организмов (образование и расщепление нуклеиновых кислот, белков и пептидов, а также большинства углеводов, некоторых карбоновых кислот и т.д.) и получила название первичного метаболизма, или первичного обмена.
Помимо реакций первичного обмена существует значительное число метаболических путей, приводящих к образованию соединений, свойственных лишь определённым, иногда очень немногим, группам организмов. Вторичные соединения образуются по преимуществу у вегетативно малоподвижных групп живых организмов — растений и грибов, а также многих прокариот. У животных продукты вторичного обмена сравнительно редки и часто поступают извне вместе с растительной пищей. Роль продуктов вторичного метаболизма и причины их появления в той или иной группе различны. В самой общей форме им приписывается адаптивная роль и в широком смысле — защитные свойства.
Стремительное развитие химии природных соединений за последние четыре десятилетия, связанное с созданием высокоразрешающих аналитических инструментов, привело к тому, что мир «вторичных соединений» значительно расширился. Например, число известных на сегодня алкалоидов приближается к 5 000 (по некоторым данным - 10 000), фенольных соединений — к 10 000, причём эти цифры растут не только с каждым годом, но и с каждым месяцем.
Любое растительное сырьё всегда содержит сложный набор первичных и вторичных соединений, которые, как сказано выше, и определяют множественный характер действия лекарственных растений. Однако роль тех и других в современной фитотерапии пока различна. Известно относительно немного растительных объектов, использование которых в медицине определяется прежде всего наличием в них первичных соединений. Однако в будущем не исключено повышение их роли в медицине и использование в качестве источников получения новых иммуномодулирующих средств.
Продукты вторичного обмена применяются в современной медицине значительно чаще и шире. Это связано с ощутимым и нередко очень ярким фармакологическим эффектом. Образуясь на основе первичных соединений, они могут накапливаться либо в чистом виде, либо в ходе реакций обмена подвергаются гликозилированию, т.е. оказываются присоединенными к молекуле какого-либо сахара. В результате гликозилирования возникают молекулы — гетерозиды, которые отличаются от негликозилированных вторичных соединений, как правило, лучшей растворимостью, что облегчает их участие в реакциях обмена и имеет в этом смысле важнейшее биологическое значение. Гликозилированные формы любых вторичных соединений принято называть гликозидами.
Каким бы путем ни осуществлялся фотосинтез, в конечном итоге он завершается накоплением энергетически богатых запасных веществ, составляющих основу для поддержания жизнедеятельности клетки и в конечном итоге всего многоклеточного организма. Эти вещества являются продуктами первичного метаболизма. Помимо главнейшей своей функции первичные метаболиты - основа для биосинтеза соединений, которые принято называть продуктами вторичного метаболизма. Последние, часто называемые условно "вторичными метаболитами", целиком "обязаны" своим существованием в природе продуктам, образующимся в итоге фотосинтеза. Следует заметить, что синтез вторичных метаболитов осуществляется за счет энергии, освобождающейся в митохондриях в процессе клеточного дыхания.
2. Широкое предстовительство вторичных метаболитов в мире растений. Признаки вторичных метаболитов
В 1891 г. немецкий биолог Альбрехт Коссель в лекции «О химическом составе клеток», которую он прочел для Берлинского общества физиологов, впервые ввел понятие «первичных» и «вторичных» компонентов клетки: «Я предлагаю называть соединения, имеющие важность для каждой клетки, первичными, а соединения, не присутствующие в любой растительной клетке, — вторичными. … В то время как первичные метаболиты присутствуют в любой растительной клетке, способной к делению, вторичные метаболиты присутствуют в клетках только "нечаянно" и не необходимы для жизни растения». Отсюда становится понятен термин «вторичные метаболиты» — второстепенные, «случайные», некоторые «чудачества» растительного метаболизма, допустимые «излишества». Такие соединения в литературе иногда даже называли «веществами роскоши клеток».
Ситуация радикально изменилась в последние десятилетия с возникновением новых методов анализа и идентификации веществ: прежде всего высокоэффективной хроматографии высокого давления (ВЭЖХ) и хромато-масс-спектрометрии (ГЖХ-МС). Выяснилось, что растения содержат десятки, если не сотни тысяч различных вторичных метаболитов, и их структура чрезвычайно разнообразна. К настоящему времени на предмет присутствия вторичных метаболитов исследовано около 20 — 30 тыс. видов растений, т.е. 10—15% от всей флоры Земли. Несмотря на это уже идентифицировано около 100 000 индивидуальных соединений вторичного метаболизма, и ежедневно в мире идентифицируют около десятка новых. Очевидно, что при таком широком представительстве в мире растений считать вторичные метаболиты синтезированными «случайно» не корректно. Также маловероятно, что такое количество разнообразных соединений не имеет функциональной роли в жизни растения.
Наиболее аргументирована к настоящему времени гипотеза, согласно которой соединения вторичного метаболизма в отличие от первичных метаболитов имеют функциональное значение не на уровне клетки, а на уровне целого организма. Скорее всего эти вещества выполняют «экологические» функции, т. е. имеют значение для защиты растения от различных вредителей и патогенов; они участвуют в размножении растения (окраска и запах цветков, плодов), во взаимодействии растений между собой и другими организмами в экосистеме. Условия окружающей среды для разных видов растений весьма разнообразны, более того, каждый вид растения может «решать» сходные задачи по-своему. Отсюда становится понятным огромное разнообразие соединений вторичного метаболизма растений и уникальность их набора для вида растения, зависимость от фазы развития растения, условий его выращивания. Из «экологических» задач также следует, что многие вторичные метаболиты должны обладать биологической активностью. Действительно, большинство лекарственных и ядовитых растений обязаны своими свойствами присутствию вторичных метаболитов. Выделение и химический анализ действующих веществ из таких растений показали еще одну особенность вторичных метаболитов: эти соединения, как правило, имеют относительно низкую молекулярную массу (у большинства она не превышает 2,0 — 3,0 кДа).
И, наконец, еще одна черта вторичных метаболитов — они синтезируются из очень небольшого числа предшественников: 7 — 8 аминокислот для алкалоидов, фенилаланин или тирозин для фенольных соединений, мевалоновая кислота или 5-оксиксилулоза для изопреноидов.
Признаки вторичных метаболитов
По химич структуре молекулы ВМ можно отличить от молекул ПМ но не всегда. Фитостерины , стигмастерин компастерин . Это обязательные компоненты растительной клетки и типичные первичные соединения
Экцистеройды ( гормоны линьки насеко мых)- ВМ присутствуют лишь у некоторых видов растений .
В.м женьшеня присутствует только в роде Panexответствующий за биологическую активность .Белковые АК и не белковые АК отличаются наличием или отсутствием митильной либо другой фунциональной группы. Аргументом которого является гипотеза согласно которой соединения первичного метаболита функционируют не на уровне клетки, а на уровне целого организма.
1) имеют значение для защиты растений от вредителей и потогенов
2) в размножении растений участвуют
3) взаимодействий растений между собой
Признаки вторичных метаболитов: - низкая молекулярная масса; - у разных растений могут синтезироваться различные вторичные метаболиты, они имеют биологическую активность; - синтезируются из небольшого набора исходных соединений. - функционируют на организменном уровне, а не только на клеточном необходимо учитывать все признаки, а также функции вторичных метаболитов.
По химической классификации, вторичные метаболиты делят на несколько групп, главные из которых: фенольные соединения, алкалоиды, изопреноиды. 1.1.Фенольные соединения – вещества ароматической природы, содержащие один или более гидроксильных групп у бензольного кольца. Вещества с одной гидроксильной группой называются фенолами, с двумя и большим числом гидроксильных групп – полифенолами. Фенольные соединения могут содержать в молекуле 1 - 2 бензольных кольца или много. Фенольные соединения встречаются у всех растений, но они различны у растений разных видов. Известно 8 000 фенолов. Представители: антоцианы, таннины, фитоалексины, лигнин, кофейная, коричная кислоты, кумарин. Фенолы находятся в вакуолях, пластидах, в лепестках цветков, в плодах, в клеточных стенках. Функции фенолов: - участвуют в транспорте электронов при фотосинтезе и дыхании (пластохинон, убихинон), - влияют на окраску растений (антоцианы в листьях, корнеплодах, цветках); привлекают насекомых и птиц, опыляющих цветки или переносящих семена; - влияют на дифференцировку клеток, - на образование в клетках гормонов (этилена, подавляют синтез ИУК); - тормозят ризогенез и растяжение клеток; - являются фитотоксинами (оказывают антимикробное действие); - с их помощью одно растение может действовать на другое, - дубильные вещества повышают устойчивость деревьев к грибным поражениям. Используются в медицине для стерилизации, лекарства (салициловая кислота), в промышленности как красители.