
- •1. Особенности распространения светового потока в оптическом волокне.
- •2. Характеристики основных оптических волокон. Профили показателя преломления волокна.
- •3. Технология плотного волнового спектрального мультиплексирования
- •Сети sdh
- •4. Компьютерная сеть и сеть передачи данных (общее и различия).
- •5. Общая задача коммутации в сети
- •6. Сети с коммутацией каналов, с коммутацией пакетов, с коммутацией сообщений
- •7. Сущность многоуровневого подхода. Протокол, интерфейс, стек протоколов.
- •8. Общая характеристика модели osi. Задачи канального и физического уровней Модель osi
- •Уровень 1, физический
- •Уровень 2, канальный
- •Уровень 3, сетевой
- •Протоколы ieee 802
- •Международный телекоммуникационный союз (itu)
- •Другие стандарты Американский национальный институт стандартов (ansi)
- •Ассоциация электронной промышленности (eia)
- •9. Общая характеристика физических сред линий связи
- •10. Характеристики линий связи
- •Амплитудно-частотная характеристика, полоса пропускания и затухание.
- •Пропускная способность линии.
- •Помехоустойчивость и достоверность.
- •11. Асинхронные протоколы. Канальный уровень.
- •12. Синхронные символьно-ориентированные протоколы
- •13. Синхронные бит-ориентированные протоколы
- •14. Передача с установлением соединения и без установления
- •15. Методы обнаружения ошибок
- •16. Методы восстановления искаженных и потерянных кадров
- •17. Компрессия данных
- •Виды компрессии данных
- •Основные методы компрессии
- •Кодирование повторов (Run-Length Encoding)
- •Вероятностные методы сжатия
- •Арифметические методы
- •Метод словарей
- •Перспективы преодоления несовместимости
- •18. Протокол точка-точка (ppp).
- •Основные характеристики
- •Автоматическая настройка
- •Многопротокольная поддержка
- •Обнаружение закольцованных связей
- •Наиболее важные особенности
- •Конфигурационные опции ppp
- •Ppp кадр
- •Тип кадра данных в ppp
- •Активации канала ppp и его фазы
- •19. Протокол, процедуры и кадры уровня llc.
- •2.2.1. Три типа процедур уровня llc
- •2.2.2. Структура кадров llc. Процедура с восстановлением кадров llc2
- •20. Реализация метода скользящего окна по протоколу llc.
- •21. Метод доступа csma/cd
- •22. Физические среды технологии 10 мегабитной Ethernet
- •23. Форматы кадров технологии классической Ethernet
- •24. Метод доступа к разделяемой среде технологии Token Ring
- •2.4.2. Маркерный метод доступа к разделяемой среде
- •Приоритетный доступ к кольцу
- •25. Формат кадров Token Ring
- •Кадр данных и прерывающая последовательность
- •26. Технология fddi
- •27. Технология Fast Ethernet и ее физические уровни. Отличие от классической Ethernet.
- •Характеристика сети Fast Ethernet
- •Сравнение технологий Fast Ethernet и Ethernet
- •Спецификация физической среды Fast Ethernet
- •28. Ограничения при построении сегментов классической Ethernet
- •29. Ограничения при построении сегментов Fast Ethernet
- •30. Технология Gigabit Ethernet (проблемы и вопросы)
- •31. Общая структура и принцип функционирования модемов
- •32. Классификация модемов Классификация модемов
- •Классификация модемов по области применения
- •33. Структурированная кабельная система
- •34. Сетевые адаптеры и драйвера. Задачи, решаемые аппаратно- программно. Многокадровая буферизация. Производительность адаптера.
- •35. Концентраторы. Основные и дополнительные функции.
3. Технология плотного волнового спектрального мультиплексирования
Технология плотного волнового (спектрального) мультиплексирования (Dense Wave Division Multiplexing, DWDM) предназначена для создания оптических магистралей нового поколения, работающих на мультигигабитных и терабитных скоростях. Такой качественный скачок производительности обеспечивает принципиально иной, нежели у SDH, метод мультиплексирования — информация в оптическом волокне передастся одновременно большим количеством световых волн (лямбд — от традиционного для физики обозначения длины волны). Сети DWDM работают по принципу коммутации каналов, при этом каждая световая волна представляет собой отдельный спектральный капая. Каждая волна несет собственную информацию, при этом оборудование DWDM не занимается непосредственно проблемами передачи данных на каждой волне, то есть способом кодирования информации и протоколом ее передачи. Устройства DWDM занимаются только объединением различных волн в одном световом пучке, а также выделением из общего сигнала информации каждого спектрального канала.
Технология DWDM
Традиционные технологии телекоммуникаций позволяют по одному оптическому волокну передать только один сигнал. Суть же технологии спектрального, или оптического уплотнения заключается в возможности организации множества раздельных сигналов SDH по одному волокну, а, следовательно, многократном увеличении пропускной способности линии связи.
Основы этой технологии были заложены в 1958, еще до появления самой волоконной оптики. Однако прошло около 20 лет, прежде чем были созданы первые компоненты мультиплексных систем. Первоначально они создавались для лабораторных исследований, и лишь в 1980 году технология спектрального уплотнения (Wavelength Division Multiplexing, WDM) была предложена для телекоммуникаций. А еще через пять лет в исследовательском центре компании AT&T была реализована технология плотного спектрального уплотнения (Dense Wavelength Division Multiplexing, DWDM), когда удалось в одном оптическом волокне создать 10 каналов по 2 Gbps.
Как это происходит? Подобно тому, как видимый человеческим глазом свет состоит из различных цветов, на которые можно его разложить, а затем опять собрать, так и передаваемый по технологии DWDM световой поток, состоит из различных длин волн (λ).
То есть по одному волокну можно передавать более сотни стандартных каналов. Так, аппаратура, используемая при построении DWDM-сети Компании ТрансТелеКом, в максимальной конфигурации позволяет задействовать до 160 длин волн.
Принципиальная схема DWDM достаточно проста. Для того чтобы организовать в одном волокне несколько оптических каналов сигналы SDH «окрашивают», то есть меняют оптическую длину волны для каждого такого сигнала. «Окрашенные» сигналы смешиваются при помощи мультиплексора и передаются в оптическую линию. В конечном пункте происходит обратная операция - «окрашенные» сигналы SDH выделяются из группового сигнала и передаются потребителю.
Естественно, что для того чтобы передавать по одному волокну множество волновых потоков, технология DWDM обеспечена оборудованием особой точности. Так, погрешность длины волны, которую обеспечивает стандартный лазер, применяемый в телекоммуникациях, примерно в сто раз больше, чем требуется в системе DWDM.
По мере прохождения по оптическому волокну сигнал постепенно затухает. Для того чтобы его усилить, используются оптические усилители. Это позволяет передавать данные на расстояния до 4000 км без перевода оптического сигнала в электрический (для сравнения, в SDH это расстояние не превышает 200 км).
Преимущества DWDM очевидны. Эта технология позволяет получить наиболее масштабный и рентабельный способ расширения полосы пропускания волоконно-оптических каналов в сотни раз. Пропускную способность оптических линий на основе систем DWDM можно наращивать, постепенно добавляя по мере развития сети в уже существующее оборудование новые оптические каналы.