- •Ответы к экзаменационным билетам по физике. «Механика, молекулярная физика»
- •Билет №1 Механическое движение. Система координат. Материальная точка. Абсолютно твердое тело.
- •Билет №2
- •Билет №3 Вектор перемещения. Модуль вектора перемещения
- •Билет №4 Скорость. Средняя скорость. Мгновенная скорость. Модуль вектора скорости. Направление скорости при криволинейном движении.
- •Билет №5 Ускорение. Среднее ускорение. Мгновенное ускорение. Компоненты ускорения. Модель вектора ускорения.
- •Билет №6
- •Билет №7
- •1 Закон ньютона. Инерциальные системы отчета.
- •Билет №8 Масса, сила. Виды сил. 2й закон ньютона.
- •Билет №9 Количество движения тела. Запись 2го закона ньютона через изменение импульса. Импульс силы.
- •Билет №10
- •3Й закон ньютона.
- •Билет №11 Понятие замкнутой системы. Закон сохранения импульса.
- •Билет №12 Работа. Работа переменной силы. Мощность.
- •Билет №13
- •Билет №14 Потенциальная энергия. Выражение для потенциальной энергии.
- •Билет №15 Консервативные и неконсервативные силы.
- •Билет №16 Связь между силой и потенциальной энергией.
- •Билет №17 Закон сохранения полной механической энергии.
- •Билет №18 Вращательное движение. Вектор углового перемещения. Направление вектора углового перемещения. Аксиальные и полярные вектора.
- •Билет №19 Угловая скорость и угловое ускорение, и их связь с линейной скоростью и ускорением.
- •Билет №20
- •Билет №21
- •Билет №22 Кинетическая энергия вращательного движения твердого тела.
- •Билет №23 Основное уравнение вращательного движения твердого тела.
- •Билет №24 Момент импульса материальной точки.
- •Билет №25 Момент импульса твердого тела.
- •Билет №28 Макроскопическое состояние. Макроскопические параметры. Уравнение состояния.
- •Билет №29 Модель идеального газа. Уравнение состояния идеального газа.
- •Билет №30 Давление газа. Точки зрения молекулярно-кинетической теории.
- •Билет №31 Основные уравнения молекулярно-кинетической теории.
- •Билет №33
- •Билет №34 Среднеквадратичная, наиболее вероятная среднеарифметическая скорости.
- •Билет №35 Распределение Больцмана.
- •Билет №37 Термодинамическое равновесие. Температура.
- •Билет №38
- •Билет №39
- •Билет №40 Количество теплоты. 1й закон термодинамики.
- •Частные случаи первого закона термодинамики для изопроцессов
- •Билет №41 Теплоемкость, уравнение Мейера.
- •Билет №42 Адиабатический процесс.
- •Билет №43
- •Билет №44
- •Билет №45 Цикл Карно и его коэффициент полезного действия (кпд)
- •Билет №46 Энтропия и его статический смысл.
- •Билет №47 Второе начало термодинамики.
- •Билет №48 Теорема Нернста
- •Билет №49 Фазовые превращения. Уравнение Клапейрона-Клаузиуса
- •Билет №50 Реальные газы. Уравнение Ван-дер-Ваальса.
Билет №45 Цикл Карно и его коэффициент полезного действия (кпд)
Формула КПД теплового двигателя:
Здесь Q1 - количество теплоты, полученное рабочим телом,
Q2 - количество теплоты, отданное холодильнику.
A - полезная работа.
Формула Карно для оценки максимального
КПД теплового двигателя:
T1 - температура нагревателя, T2 - температура холодильника.
Цикл Карно для тепловой машины
Энергетическая схема тепловой машины: 1 – нагреватель; 2 – холодильник; 3 – рабочее
тело, совершающее круговой процесс. Q1 > 0, A > 0, Q2 < 0; T1 > T2
Энергетическая схема холодильной машины. Q1 < 0, A < 0, Q2 > 0, T1 > T2
Билет №46 Энтропия и его статический смысл.
Энтропия- (от греч. entropia — поворот, превращение), понятие, впервые введённое в термодинамике для определения меры необратимого рассеяния энергии.
где —
приращение энтропии;
— минимальная теплота, подведённая к
системе; T — абсолютная температура
процесса.
Термодинамической вероятностью или статистическим весом макросостояния W - называется число микросостояний, осуществляющих данное макросостояние (или число перестановок одноименных элементов, при которых сохраняется данное макросостояние).
Термодинамическая вероятность W - максимальна, когда система находится в равновесном состоянии.
Энтропия S – аддитивная
величина:
,
где
- сумма энтропий тел, входящих в систему.
Аддитивной величиной является логарифм
термодинамической вероятности:
Поэтому Л. Больцман предложил:
,
где k – коэффициент Больцмана. С этой точки зрения энтропия выступает, как мера беспорядочности, хаотичности состояния.
Билет №47 Второе начало термодинамики.
Второе начало термодинамики, принцип, устанавливающий необратимость макроскопических процессов, протекающих с конечной скоростью. В отличие от чисто механических (без трения) или электродинамических (без выделения джоу-левой теплоты) обратимых процессов, процессы, связанные с теплообменом при конечной разности температур (т. е. текущие с конечной скоростью), с трением, диффузией газов, расширением газов в пустоту, выделением джоулевой теплоты и т.д., необратимы, т. е. могут самопроизвольно протекать только в одном направлении (см. Необратимые процессы).
Исторически В. н. т. возникло из анализа работы тепловых машин (С. Карно, 1824). Существует несколько эквивалентных формулировок В. н. т. Само название "В. н. т." и исторически первая его формулировка (1850) принадлежат Р. Клаузиусу: невозможен процесс, при котором теплота переходила бы самопроизвольно от тел более холодных к телам более нагретым. При этом самопроизвольный переход не следует понимать в узком смысле: невозможен не только непосредственный переход, его невозможно осуществить и с помощью машин или приборов без того, чтобы в природе не произошло ещё каких-либо изменений. Иными словами, невозможно провести процесс, единственным следствием которого был бы переход теплоты от более холодного тела к более нагретому. Если бы (в нарушение положения Клаузиуса) такой процесс оказался возможным, то можно было бы, разделив один тепловой резервуар на 2 части и переводя теплоту из одной в другую, получить 2 резервуара с различными температурами. Это позволило бы, в свою очередь, осуществить Карно цикл и получить механическую работу с помощью периодически действующей (т. е. многократно возвращающейся к исходному состоянию) машины за счёт внутренней энергии одного теплового резервуара. Поскольку это невозможно, в природе невозможны процессы, единственным следствием которых был бы подъём груза (т. е. механическая работа), произведённый за счёт охлаждения теплового резервуара (такова формулировка В. н. т., данная У. Томсоном, 1851). Обратно, если бы можно было получить механическую работу за счёт внутренней энергии одного теплового резервуара (в противоречии с В. н. т. по Томсону), то можно было бы нарушить и положение Клаузиуса. Механическую работу, полученную за счёт теплоты от более холодного резервуара, можно было бы использовать для нагревания более тёплого резервуара (например, трением) и тем самым осуществить переход теплоты от холодного тела к нагретому. Обе приведённые формулировки В. н. т., являясь эквивалентными, подчёркивают существенное различие в возможности реализации энергии, полученной за счёт внешних источников работы, и энергии беспорядочного (теплового) движения частиц тела.
Возможность использования энергии теплового движения частиц тела (теплового резервуара) для получения механической работы (без изменения состояния других тел) означала бы возможность реализации так называемого вечного двигателя 2-го рода, работа которого не противоречила бы закону сохранения энергии. Так, работа двигателя корабля за счёт охлаждения забортной воды океана — доступного и практически неисчерпаемого резервуара внутренней энергии — не противоречит закону сохранения энергии, но если, кроме охлаждения воды, нигде других изменений нет, то работа такого двигателя противоречит В. н. т. В реальном тепловом двигателе процесс превращения теплоты в работу обязательно сопряжён с передачей определённого количества теплоты внешней среде. В результате тепловой резервуар двигателя охлаждается, а более холодная внешняя среда нагревается, что находится в согласии со В. н. т. Следовательно, В. н. т. можно формулировать и как невозможность вечного двигателя 2-го рода.
