- •Ответы к экзаменационным билетам по физике. «Механика, молекулярная физика»
- •Билет №1 Механическое движение. Система координат. Материальная точка. Абсолютно твердое тело.
- •Билет №2
- •Билет №3 Вектор перемещения. Модуль вектора перемещения
- •Билет №4 Скорость. Средняя скорость. Мгновенная скорость. Модуль вектора скорости. Направление скорости при криволинейном движении.
- •Билет №5 Ускорение. Среднее ускорение. Мгновенное ускорение. Компоненты ускорения. Модель вектора ускорения.
- •Билет №6
- •Билет №7
- •1 Закон ньютона. Инерциальные системы отчета.
- •Билет №8 Масса, сила. Виды сил. 2й закон ньютона.
- •Билет №9 Количество движения тела. Запись 2го закона ньютона через изменение импульса. Импульс силы.
- •Билет №10
- •3Й закон ньютона.
- •Билет №11 Понятие замкнутой системы. Закон сохранения импульса.
- •Билет №12 Работа. Работа переменной силы. Мощность.
- •Билет №13
- •Билет №14 Потенциальная энергия. Выражение для потенциальной энергии.
- •Билет №15 Консервативные и неконсервативные силы.
- •Билет №16 Связь между силой и потенциальной энергией.
- •Билет №17 Закон сохранения полной механической энергии.
- •Билет №18 Вращательное движение. Вектор углового перемещения. Направление вектора углового перемещения. Аксиальные и полярные вектора.
- •Билет №19 Угловая скорость и угловое ускорение, и их связь с линейной скоростью и ускорением.
- •Билет №20
- •Билет №21
- •Билет №22 Кинетическая энергия вращательного движения твердого тела.
- •Билет №23 Основное уравнение вращательного движения твердого тела.
- •Билет №24 Момент импульса материальной точки.
- •Билет №25 Момент импульса твердого тела.
- •Билет №28 Макроскопическое состояние. Макроскопические параметры. Уравнение состояния.
- •Билет №29 Модель идеального газа. Уравнение состояния идеального газа.
- •Билет №30 Давление газа. Точки зрения молекулярно-кинетической теории.
- •Билет №31 Основные уравнения молекулярно-кинетической теории.
- •Билет №33
- •Билет №34 Среднеквадратичная, наиболее вероятная среднеарифметическая скорости.
- •Билет №35 Распределение Больцмана.
- •Билет №37 Термодинамическое равновесие. Температура.
- •Билет №38
- •Билет №39
- •Билет №40 Количество теплоты. 1й закон термодинамики.
- •Частные случаи первого закона термодинамики для изопроцессов
- •Билет №41 Теплоемкость, уравнение Мейера.
- •Билет №42 Адиабатический процесс.
- •Билет №43
- •Билет №44
- •Билет №45 Цикл Карно и его коэффициент полезного действия (кпд)
- •Билет №46 Энтропия и его статический смысл.
- •Билет №47 Второе начало термодинамики.
- •Билет №48 Теорема Нернста
- •Билет №49 Фазовые превращения. Уравнение Клапейрона-Клаузиуса
- •Билет №50 Реальные газы. Уравнение Ван-дер-Ваальса.
Билет №2
Кинематическое описание движения. Траектория. Путь. Радиус-вектор определяющий положения тела. Координаты тела.
Для описания движения можно выбирать различные системы отсчета. В различных системах отсчета движение одного и того же тела выглядит по разному. В кинематике при выборе системы отсчета руководствуются лишь соображениями целесообразности, определяющимися конкретными условиями. Так, при рассмотрении движения тел на Земле естественно связать систему отсчета с Землей, что мы и будем делать. При рассмотрении движения самой Земли систему отсчета удобнее связывать с Солнцем и т. п. Никаких принципиальных преимуществ одной системы отсчета по сравнению с другой в кинематике указать нельзя. Все системы отсчета кинематически эквивалентны. Только в динамике, изучающей движение в связи с силами, действующими на движущиеся тела, выявляются принципиальные преимущества определенной системы отсчета или, точнее, определенного класса систем отсчета.
Координаты тела- Рассматривая движение тела в пространстве, описывают изменение во времени его координат, скорости, ускорения и других параметров. Обычно вводят декартову прямоугольную систему координат.
Если тело находится в покое и задана неподвижная система отсчета, его координаты в ней постоянны, с течением времени не меняются. Условное определение координат здесь зависит лишь выбора от нулевой точки и единиц измерения. График координат на осях «координаты-время» будет прямой, параллельной временной оси.
Если тело движется прямолинейно и равномерно, формула для его координат будет иметь вид: x=x0+v•t, где x0 – координата в начальный момент времени t=0, v – постоянная скорость. График координат будет представлен прямой линией, где скорость v – тангенс угла наклона.
Если же тело движется по прямой равноускоренно, то x=x0+v0•t+a•t²/2. Здесь x0 – начальная координата, v0 – начальная скорость, a – постоянное ускорение. Линейную зависимость в этом случае имеет скорость: v=v0+a•t, график скорости – прямая. А вот график для координат будет похож на параболу.
Скорость – первая производная координаты по времени. Если задана функция зависимости скорости от времени и начальные условия, можно установить и зависимость координат. Для этого уравнение скорости нужно проинтегрировать, а для поиска интегральной константы подставить дополнительно известные величины.
Радиус-вектор точки - это называется вектор, начало которого совпадает с началом системы координат, а конец - с данной точкой.
Таким образом, особенностью радиус-вектора, отличающего его от всех других векторов, является то, что его начало всегда находится в точке начала координат
Линию, вдоль которой движется материальная точка, называют траекторией.
Длина части траектории между начальным и конечным положением точки называют путем (L). Единица измерения пути — 1м.
Билет №3 Вектор перемещения. Модуль вектора перемещения
Вектор перемещения (или просто перемещение) – это направленный отрезок прямой, соединяющий начальное положение тела с его последующим положением (рис. 1.1). Перемещение – величина векторная. Вектор перемещения направлен от начальной точки движения к конечной.
Модуль вектора перемещения (то есть длина отрезка, который соединяет начальную и конечную точки движения) может быть равен пройденному пути или быть меньше пройденного пути. Но никогда модуль вектора перемещения не может быть больше пройденного пути.
Модуль вектора перемещения равен
пройденному пути, когда путь совпадает
с траекторией (см. разделы Траектория
и Путь), например, если из точки А в точку
Б автомобиль перемещается по прямой
дороге. Модуль вектора перемещения
меньше пройденного пути, когда материальная
точка движется по криволинейной
траектории (рис. 1.1).На рис. 1.1:
Ещё пример. Если автомобиль проедет по кругу один раз, то получится, что точка начала движения совпадёт с точкой конца движения и тогда вектор перемещения будет равен нулю, а пройденный путь будет равен длине окружности. Таким образом, путь и перемещение – это два разных понятия.
