
- •Ответы к экзаменационным билетам по физике. «Механика, молекулярная физика»
- •Билет №1 Механическое движение. Система координат. Материальная точка. Абсолютно твердое тело.
- •Билет №2
- •Билет №3 Вектор перемещения. Модуль вектора перемещения
- •Билет №4 Скорость. Средняя скорость. Мгновенная скорость. Модуль вектора скорости. Направление скорости при криволинейном движении.
- •Билет №5 Ускорение. Среднее ускорение. Мгновенное ускорение. Компоненты ускорения. Модель вектора ускорения.
- •Билет №6
- •Билет №7
- •1 Закон ньютона. Инерциальные системы отчета.
- •Билет №8 Масса, сила. Виды сил. 2й закон ньютона.
- •Билет №9 Количество движения тела. Запись 2го закона ньютона через изменение импульса. Импульс силы.
- •Билет №10
- •3Й закон ньютона.
- •Билет №11 Понятие замкнутой системы. Закон сохранения импульса.
- •Билет №12 Работа. Работа переменной силы. Мощность.
- •Билет №13
- •Билет №14 Потенциальная энергия. Выражение для потенциальной энергии.
- •Билет №15 Консервативные и неконсервативные силы.
- •Билет №16 Связь между силой и потенциальной энергией.
- •Билет №17 Закон сохранения полной механической энергии.
- •Билет №18 Вращательное движение. Вектор углового перемещения. Направление вектора углового перемещения. Аксиальные и полярные вектора.
- •Билет №19 Угловая скорость и угловое ускорение, и их связь с линейной скоростью и ускорением.
- •Билет №20
- •Билет №21
- •Билет №22 Кинетическая энергия вращательного движения твердого тела.
- •Билет №23 Основное уравнение вращательного движения твердого тела.
- •Билет №24 Момент импульса материальной точки.
- •Билет №25 Момент импульса твердого тела.
- •Билет №28 Макроскопическое состояние. Макроскопические параметры. Уравнение состояния.
- •Билет №29 Модель идеального газа. Уравнение состояния идеального газа.
- •Билет №30 Давление газа. Точки зрения молекулярно-кинетической теории.
- •Билет №31 Основные уравнения молекулярно-кинетической теории.
- •Билет №33
- •Билет №34 Среднеквадратичная, наиболее вероятная среднеарифметическая скорости.
- •Билет №35 Распределение Больцмана.
- •Билет №37 Термодинамическое равновесие. Температура.
- •Билет №38
- •Билет №39
- •Билет №40 Количество теплоты. 1й закон термодинамики.
- •Частные случаи первого закона термодинамики для изопроцессов
- •Билет №41 Теплоемкость, уравнение Мейера.
- •Билет №42 Адиабатический процесс.
- •Билет №43
- •Билет №44
- •Билет №45 Цикл Карно и его коэффициент полезного действия (кпд)
- •Билет №46 Энтропия и его статический смысл.
- •Билет №47 Второе начало термодинамики.
- •Билет №48 Теорема Нернста
- •Билет №49 Фазовые превращения. Уравнение Клапейрона-Клаузиуса
- •Билет №50 Реальные газы. Уравнение Ван-дер-Ваальса.
Билет №44
Обратимые и необратимые процессы.
В изолированной термодинамической системе через некоторый промежуток времени устанавливается внутреннее равновесие, при котором рабочее тело по всей массе имеет одинаковую температуру и давление.
При равенстве давлений в системе и в окружающей среде изменение объема рабочего тела прекращается, и передача энергии в форме работы отсутствует (система находится в механическом равновесии со средой). Равенство температур рабочего тела и среды обеспечивает термическое равновесие. При этом между системой и окружающей средой не возникает передачи энергии в форме теплоты. Термодинамический процесс возможен только при нарушении механического или термического равновесия, и чем сильнее нарушается равновесие, тем быстрее протекает процесс. Все реальные термодинамические системы не изолированы от окружающей среды, которая выводит их из равновесия. Поэтому они являются неравновесными. Учитывая чрезвычайную сложность теплотехнических расчетов таких процессов, на практике их заменяют равновесными, то есть такими, при которых система проходит последовательно бесчисленное множество равновесных состояний. Эти равновесные процессы называют квазистатическими.
Рис. 5.1. Линии обратимых прямого A-B и обратного B-A процессов на pv-диаграмме
Для любой термодинамической системы можно представить два состояния, между которыми будет проходить два процесса: один от первого состояния ко второму и другой, наоборот, от второго состояния к первому. Первый процесс называют прямым, второй — обратным. Если после прямого процесса 1—2 следует обратный 2—1 и при этом термодинамическая система возвращается в исходное состояние, то такие процессы принято считать обратимыми. При обратимых процессах система в обратном процессе проходит через те же равновесные состояния, что и в прямом процессе. При этом ни в окружающей среде, ни в самой системе не возникает никаких остаточных явлений, то есть не имеет значения идет процесс А-В или В-А (рис. 5.1).
Различают механически и термически обратимые процессы.
В механически обратимом процессе обмен энергией между системой и окружающей средой протекает в форме работы при бесконечно малой разности давлений.
В термически обратимом процессе термодинамическая система обменивается с окружающей средой энергией в форме теплоты при бесконечно малой разности температур.
Любой равновесный термодинамический процесс изменения состояния рабочего тела будет всегда обратимым. Обратимые процессы являются идеальными.
Действительные термодинамические процессы совершаются при конечной разности давлений и температур рабочего тела и окружающей среды и поэтому являются неравновесными. Такие процессы необратимы.
Необратимый термодинамический процесс – это процесс, при котором система не возвращается в исходное состояние после обратного процесса. Все необратимые процессы протекают в направлении достижения в термодинамической системе равновесия, то есть выравнивания в ней давлений, температур, концентраций.