- •Ответы к экзаменационным билетам по физике. «Механика, молекулярная физика»
- •Билет №1 Механическое движение. Система координат. Материальная точка. Абсолютно твердое тело.
- •Билет №2
- •Билет №3 Вектор перемещения. Модуль вектора перемещения
- •Билет №4 Скорость. Средняя скорость. Мгновенная скорость. Модуль вектора скорости. Направление скорости при криволинейном движении.
- •Билет №5 Ускорение. Среднее ускорение. Мгновенное ускорение. Компоненты ускорения. Модель вектора ускорения.
- •Билет №6
- •Билет №7
- •1 Закон ньютона. Инерциальные системы отчета.
- •Билет №8 Масса, сила. Виды сил. 2й закон ньютона.
- •Билет №9 Количество движения тела. Запись 2го закона ньютона через изменение импульса. Импульс силы.
- •Билет №10
- •3Й закон ньютона.
- •Билет №11 Понятие замкнутой системы. Закон сохранения импульса.
- •Билет №12 Работа. Работа переменной силы. Мощность.
- •Билет №13
- •Билет №14 Потенциальная энергия. Выражение для потенциальной энергии.
- •Билет №15 Консервативные и неконсервативные силы.
- •Билет №16 Связь между силой и потенциальной энергией.
- •Билет №17 Закон сохранения полной механической энергии.
- •Билет №18 Вращательное движение. Вектор углового перемещения. Направление вектора углового перемещения. Аксиальные и полярные вектора.
- •Билет №19 Угловая скорость и угловое ускорение, и их связь с линейной скоростью и ускорением.
- •Билет №20
- •Билет №21
- •Билет №22 Кинетическая энергия вращательного движения твердого тела.
- •Билет №23 Основное уравнение вращательного движения твердого тела.
- •Билет №24 Момент импульса материальной точки.
- •Билет №25 Момент импульса твердого тела.
- •Билет №28 Макроскопическое состояние. Макроскопические параметры. Уравнение состояния.
- •Билет №29 Модель идеального газа. Уравнение состояния идеального газа.
- •Билет №30 Давление газа. Точки зрения молекулярно-кинетической теории.
- •Билет №31 Основные уравнения молекулярно-кинетической теории.
- •Билет №33
- •Билет №34 Среднеквадратичная, наиболее вероятная среднеарифметическая скорости.
- •Билет №35 Распределение Больцмана.
- •Билет №37 Термодинамическое равновесие. Температура.
- •Билет №38
- •Билет №39
- •Билет №40 Количество теплоты. 1й закон термодинамики.
- •Частные случаи первого закона термодинамики для изопроцессов
- •Билет №41 Теплоемкость, уравнение Мейера.
- •Билет №42 Адиабатический процесс.
- •Билет №43
- •Билет №44
- •Билет №45 Цикл Карно и его коэффициент полезного действия (кпд)
- •Билет №46 Энтропия и его статический смысл.
- •Билет №47 Второе начало термодинамики.
- •Билет №48 Теорема Нернста
- •Билет №49 Фазовые превращения. Уравнение Клапейрона-Клаузиуса
- •Билет №50 Реальные газы. Уравнение Ван-дер-Ваальса.
Билет №40 Количество теплоты. 1й закон термодинамики.
Коли́чество теплоты́ — энергия, которую получает или теряет тело при теплопередаче. Количество теплоты является одной из основных термодинамических величин.
Количество теплоты является функцией процесса, а не функцией состояния, то есть количество теплоты, полученное системой, зависит от способа, которым она была приведена в текущее состояние.
Количество теплоты, необходимое для нагревания тела или выделяющееся при его охлаждении, прямо пропорционально массе тела и изменению его температуры:
Q = cmΔT,
где с - удельная теплоемкость [Дж/кг·К], m - масса тела [кг], ΔT - изменение температуры [К]
Количество теплоты, необходимое для превращения жидкости в пар или выделяющееся при его конденсации, прямо пропорционально массе жидкости:
Q = Lm,
где L - удельная теплота парообразования [Дж/кг], m - масса тела [кг]
Количество теплоты, необходимое для плавления тела или выделяющееся при его кристаллизации, прямо пропорционально массе этого тела:
Q = λm,
где λ (лямбда) - удельная теплота плавления [Дж/кг], m - масса тела [кг]
Количество теплоты, выделяющееся при сгорании топлива, прямо пропорционально его массе:
Q = qm,
где q - удельная теплота сгорания [Дж/кг], m - масса тела [кг]
Первый закон термодинамики (закон сохранения энергии для тепловых процессов) определяет количественное соотношение между изменением внутренней энергии системы дельта U, количеством теплоты Q, подведенным к ней, и суммарной работой внешних сил A, действующих на систему.
Первый закон термодинамики - Изменение
внутренней энергии системы при ее
переходе из одного состояния в другое
равно сумме количества теплоты,
подведенного к системе извне, и работы
внешних сил, действующих на нее:
Первый закон термодинамики - количество
теплоты, подведенное к системе, идет на
изменение ее внутренней энергии и на
совершение системой работы над внешними
телами:
Частные случаи первого закона термодинамики для изопроцессов
При изохорном процессе объем газа
остается постоянным, поэтому газ не
совершает работу. Изменение внутренней
энергии газа происходит благодаря
теплообмену с окружающими телами:
При изотермическом процессе количество
теплоты, переданное газу от нагревателя,
полностью расходуется на совершение
работы:
При изобарном расширении газа подведенное
к нему количество теплоты расходуется
как на увеличение его внутренней энергии
и на совершение работы газом:
Адиабатный процесс - термодинамический
процесс в теплоизолированной системе.
Теплоизолированная система - система, не обменивающаяся энергией с окружающими телами.
Билет №41 Теплоемкость, уравнение Мейера.
Теплоёмкость тела характеризуется
количеством теплоты, необходимой для
нагревания этого тела на один градус:
Массовая теплоемкость — это теплоемкость, отнесенная к единице массы рабочего тела, .
Единицей измерения массовой теплоемкости является Дж/(кг • К). Массовую теплоемкость называют также удельной теплоемкостью.
Объемная теплоемкость — теплоемкость, отнесенная к единице объема рабочего тела, ,
где V и p — объем и плотность тела при нормальных физических условиях.
Объемная теплоемкость измеряется в Дж/(м3 • К).
Мольная теплоемкость — теплоемкость, отнесенная к количеству рабочего тела (газа) в молях, ,
где n— количество газа в молях.
Мольную теплоемкость измеряют в Дж/(моль • К).
Массовая и мольная теплоемкости связаны следующим соотношением:
или
,
где
- молекулярная масса.
Объемная теплоемкость газов выражается через мольную как
или,
Для изобарного процесса(P=const) изменяются объем и температура=>совершается работа dA=PdV и изменяется внутренняя энергия dU. Первое начало термодинамики для этого процесса: dQ=dU+PdV. При изобарном процессе dQp=Cp*dT => Cp*dT=dU+PdV или, поскольку внутренняя энергия является функцией лишь температуры dU=Cv*dT, => Cp*dT=Cv*dT+PdV. Для изобарного процесса уравнение моля идеального газа имеет вид PdV=RdT => Cp*dT=Cv*dT+R*dT => Cp=Cv+R (последнее соотношение называют уравнением Майера)
