- •Ответы к экзаменационным билетам по физике. «Механика, молекулярная физика»
- •Билет №1 Механическое движение. Система координат. Материальная точка. Абсолютно твердое тело.
- •Билет №2
- •Билет №3 Вектор перемещения. Модуль вектора перемещения
- •Билет №4 Скорость. Средняя скорость. Мгновенная скорость. Модуль вектора скорости. Направление скорости при криволинейном движении.
- •Билет №5 Ускорение. Среднее ускорение. Мгновенное ускорение. Компоненты ускорения. Модель вектора ускорения.
- •Билет №6
- •Билет №7
- •1 Закон ньютона. Инерциальные системы отчета.
- •Билет №8 Масса, сила. Виды сил. 2й закон ньютона.
- •Билет №9 Количество движения тела. Запись 2го закона ньютона через изменение импульса. Импульс силы.
- •Билет №10
- •3Й закон ньютона.
- •Билет №11 Понятие замкнутой системы. Закон сохранения импульса.
- •Билет №12 Работа. Работа переменной силы. Мощность.
- •Билет №13
- •Билет №14 Потенциальная энергия. Выражение для потенциальной энергии.
- •Билет №15 Консервативные и неконсервативные силы.
- •Билет №16 Связь между силой и потенциальной энергией.
- •Билет №17 Закон сохранения полной механической энергии.
- •Билет №18 Вращательное движение. Вектор углового перемещения. Направление вектора углового перемещения. Аксиальные и полярные вектора.
- •Билет №19 Угловая скорость и угловое ускорение, и их связь с линейной скоростью и ускорением.
- •Билет №20
- •Билет №21
- •Билет №22 Кинетическая энергия вращательного движения твердого тела.
- •Билет №23 Основное уравнение вращательного движения твердого тела.
- •Билет №24 Момент импульса материальной точки.
- •Билет №25 Момент импульса твердого тела.
- •Билет №28 Макроскопическое состояние. Макроскопические параметры. Уравнение состояния.
- •Билет №29 Модель идеального газа. Уравнение состояния идеального газа.
- •Билет №30 Давление газа. Точки зрения молекулярно-кинетической теории.
- •Билет №31 Основные уравнения молекулярно-кинетической теории.
- •Билет №33
- •Билет №34 Среднеквадратичная, наиболее вероятная среднеарифметическая скорости.
- •Билет №35 Распределение Больцмана.
- •Билет №37 Термодинамическое равновесие. Температура.
- •Билет №38
- •Билет №39
- •Билет №40 Количество теплоты. 1й закон термодинамики.
- •Частные случаи первого закона термодинамики для изопроцессов
- •Билет №41 Теплоемкость, уравнение Мейера.
- •Билет №42 Адиабатический процесс.
- •Билет №43
- •Билет №44
- •Билет №45 Цикл Карно и его коэффициент полезного действия (кпд)
- •Билет №46 Энтропия и его статический смысл.
- •Билет №47 Второе начало термодинамики.
- •Билет №48 Теорема Нернста
- •Билет №49 Фазовые превращения. Уравнение Клапейрона-Клаузиуса
- •Билет №50 Реальные газы. Уравнение Ван-дер-Ваальса.
Билет №39
Работа в адиабатических системах. Внутренняя энергия.
Адиабатическим называется процесс, при котором отсутствует теплообмен (δQ=0) между системой и окружающей средой. Адиабатическим процессами можно считать все быстропротекающие процессы. Таковым, например, можно считать процесс распространения звука в среде, так как скорость распространения звуковой волны настолько большая по значению, что обмен энергией между средой и волной произойти не успевает. Адиабатические процессы происходят в двигателях внутреннего сгорания (сжатие и расширение горючей смеси в цилиндрах), в холодильных установках и т. д.
Из первого начала термодинамики
(δQ=dU+δA) для адиабатического процесса
следует, что
(1)
т. е. внешняя работа совершается за счет изменения внутренней энергии системы.
Используя формулы δA=pdV и CV=dUm/dT, для
произвольной массы газа перепишем
уравнение (1) в виде
(2)
применив дифференцирование уравнение
состояния для идеального газа pV=(m/M)RT
получим
(3)
Исключим из (2) и (3) температуру Т.
Разделив переменные и учитывая, что
Сp/СV=γ , найдем
Проинтегрируя это уравнение в пределах
от p1 до p2 и соответственно от V1 до V2, и
потенцируя, придем к выражению
или
Так как состояния 1 и 2 выбраны произвольно,
то можно записать
(4)
Полученное выражение есть уравнение адиабатического процесса, называемое также уравнением Пуассона.
Для перехода к переменным Т, V или p, Т
исключим из (55.4) с помощью уравнения
Менделеева-Клапейрона
соответственно давление или объем: (5)
(6)
Выражения (4) — (6) представляют собой уравнения адиабатического процесса. В них безразмерная величина
(7)
называется показателем адиабаты (или коэффициентом Пуассона). Для одноатомных газов (Ne, He и др.), достаточно хорошо удовлетворяющих условию идеальности, i=3, γ=1,67. Для двухатомных газов (Н2, N2, О2 и др.) i=5, γ=1,4. Значения γ, вычисленные по формуле (55.7), хорошо подтверждаются экспериментом.
Диаграмма адиабатического процесса (адиабата) в координатах р, V есть гипербола (рис. 1). На рисунке видно, что адиабата (pVγ = const) более крута, чем изотерма (pV = const) по причине, что при адиабатическом сжатии 1—3 увеличение давления газа обусловлено не только уменьшением его объема, как при изотермическом сжатии, но и повышением температуры.
Рис.1
Вычислим работу, которую совершает газ
в адиабатическом процессе. Запишем
уравнение (1) в виде
Если газ адиабатически расширяется от объема V1 до V2, то его температура уменьшается от T1 до T2 и работа расширения идеального газа
(8)
Используя те же приемы, что и при выводе формулы (5), выражение (8) для работы при адиабатическом расширении можно привести к виду
где p1V1=(m/M)RT1
Работа, которую совершает газом при адиабатическом расширении 1—2 (определяется площадью, заштрихованной на рис. 1), меньше, чем при изотермическом, по причине, что при адиабатическом расширении осуществляется охлаждение газа, тогда как при изотермическом — температура поддерживается постоянной за счет притока извне такого же количества теплоты.
Внутренняя энергия термодинамическая функция состояния системы, ее энергия, определяемая внутренним состоянием. Внутренняя энергия складывается в основном из кинетической энергии движения частиц (атомов, молекул, ионов, электронов) и энергии взаимодействия между ними (внутри- и межмолекулярной). В термодинамике определяется лишь изменение внутренней энергии в различных процессах. Поэтому внутреннюю энергию задают с точностью до некоторого постоянного слагаемого, зависящего от энергии, принятой за нуль отсчета.
Внутренняя энергия U как функция состояния вводится первым началом термодинамики, согласно которому разность между теплотой Q, переданной системе, и работой W, совершаемой системой, зависит только от начального и конечного состояний системы и не зависит от пути перехода, т.е. представляет изменение фуникции состояния ΔU
где U1 и U2 - внутренняя энергия системы в начальном и конечном состояниях соответственно. Уравнение (1) выражает закон сохранения энергии в применении к термодинамическим процессам, т.е. процессам, в которых происходит передача теплоты. Для циклического процесса, возвращающего систему в начальное состояние, ΔU=0. В изохорных процессах, т.е. процессах при постоянном объеме, система не совершает работы за счет расширения, W=0 и теплота, переданная системе, равна приращению внутренней энергии: Qv=ΔU. Для адиабатических процессов, когда Q=0, ΔU=-W.
Внутренняя энергия системы как функция ее энтропии S, объема V и числа молей mi i-того компонента представляет собой термодинамический потенциал. Это является следствием первого и второго начал термодинамики и выражается соотношением:
где
Т - абсолютная температура, р - давление,
μi - химический потенциал i-того компонента.
Знак равенства относится к равновесным
процессам, знак неравенства - к
неравновесным. Для системы с заданными
значениями S, V, mi (закрытая система в
жесткой адиабатной оболочке) внутренняя
энергия при равновесии минимальна.
Внутренняя энергия одноатомного идеального газа складывается из средней энергии поступательного движения молекул и средней энергии возбужденных электронных состояний; для двух- и многоатомных газов к этому значению добавляется также средняя энергия вращения молекул и их колебаний около положения равновесия.
