
- •1. Матриці, основні поняття. Різновиди матриць.
- •2. Дії над матрицями. Властивості дій над матрицями.
- •3.Визначники квадратних матриць. Способи обчислення визначників.
- •4. . Визначник n-ого порядку. Теорема Лапласа.
- •5. Визначники.Властивості визначників.
- •6. Обернена матриця. Алгоритм оберненої матриці.
- •7. Мінори та алгебраїчні доповнення елементів.
- •8. Ранг матриці. Властивості рангу матриці. Елементарні перетворення матриці.
- •9. Основні поняття система n лінійних алгебраїчних рівнянь з n змінними. Правило Крамера. (n*n)
- •10. Матричний метод розв’язування слар.(метод оберненої матриці). Алгоритм розв’язування системи матричним методом. (n*n)
- •11.Теорема Кронекера-Капеллі. Алгоритм розв’язання слар.
- •12.Основні поняття системи m лінійних рівнянь з n змінними. Розв’язок слар методом Гаусса.
- •13.Метод Жордана-Гаусса.Алгоритм кроку перетворення Жордано-Гаусса.
- •14. Скалярний векторний добуток. Властивості векторного добутку.
- •16. Векторний простір, його розмірність,базис. Розклад вектора за базисом. Лінійно залежні і лінійно незалежні системи векторів.
- •21.Кут між двома прямими заданими канонічним рівнянням. Умови паралельності і перпендикулярності прямих.
- •22. Рівняння прямої з кутовим коефіцієнтом. Відстань від точки до прямої.
- •24. Різновиди рівняння площини у просторі: за трьома точками, у відрізках на осях, нормальне.
- •26. Загальне рівняння площини і його дослідження.
- •31. Еліпс : означення, рівняння, графік, вершини, півосі, фокуси, ексцентриситет, директриси.
- •Вершини еліпса
- •32. Гіпербола : означення, рівняння, графік, спряжена гіпербола, вершини, осі, фокуси, ексцентриситет, асимптоти, директриси.
- •33. Парабола : означення, рівняння, графік, спряжена гіпербола, вершина, фокус, ексцентриситет, директриса. Різновиди розміщення параболи на площині та її рівняння
- •34.Поняття числової послідовності: формула n-го члена,зростаюча,спадна,обмежена послідовність.Поняття границі числової послідовності.
- •35.Основні властивості границі послідовності
- •32. Рівняння площини, що проходить через задану точку перпендикулярно до заданого вектора.
- •33. Кут між площинами. Умови паралельності і перпендикулярності двох площин. Відстань від точки до площини.
- •34. Різновиди рівняння в просторі: канонічне, параметричні, за двома точками. Пряма як перетин двох площин.
- •35. Кут між прямими в просторі. Кут між прямою і площиною. Умови паралельності і перпендикулярності прямої і площини. Знаходження точки перетину прямої і площини.
- •36. Поняття кривих ліній другого порядку. Дослідження рівняння другого порядку. Коло.
- •37. Еліпс: означення, рівняння, графік, вершини, півосі, фокуси, ексцентриситет, директриси.
- •38. Гіпербола: означення, рівняння, графік, спряжена гіпербола, вершини, осі, фокуси, ексцентриситет, асимптоти, директриси.
- •39. Парабола: означення, рівняння, графік,вершина, фокус, ексцентриситет, директриса. Різновиди розміщення параболи на площині та її рівняння.
- •40. Поняття числової послідовності, формула n-го члена, зростаюча, спадна, обмежена послідовність. Поняття границі числової послідовності.
- •45. Теорема про зв'язок між нескінченно малими та нескінченно великими функціями. Теорема про зв'язок між нескінченно малими функціями та границею функції.
- •123.Необхідна ознака збіжності ряду.
- •148. Лінійні однорідні диференціальні рівняння другого порядку зі сталими коефіцієнтами.
- •149.Лінійні неоднорідні рівняння другого порядку зі сталими коефіцієнтами.
- •46. Еквівалентні нескінчені малі величини. Ланцюжок еквівалентних нескінченно малих величин. Теорема про застосування еквівалентних нескінченно малих величин про обчислення границь функцій.
- •47. Властивості функцій, які мають границю в точці: єдність границі, граничний перехід у нерівності, границя проміжної фукції, обмеженість функції в точці.
- •48. Властивості границь функції: границя сталої, суми, добутку, частки функцій, границя степеневої функції.
- •49. Розкриття невизначеностей, при застосуванні ірраціональних функцій та многочленів під час обчислення границь функцій.
- •50. Перша і друга важливі границі та наслідки з них.
- •51. Неперервність функції в точці: означення Коші та означення в термінах приростів функцій та аргументу. Застосування поняття неперервності при обчисленні границь функцій.
- •52. Властивості функцій, неперервних у точці. Теорема про неперервність елементарних функцій.
- •53. Властивості функцій, неперервних на відрізку. Геометрична інтерпретація цих властивостей.
- •55. Задачі, які приводять до поняття похідної: задача про продуктивність праці, задача про кутовий коефіцієнт дотичної.
- •56. Означеня похідної. Диференційованість і неперервність функції в точці і на проміжку.
- •57. Правила диференціювання сталої, суми, добутку, частки функцій та наслідки з них.
- •59. Геометричний зміст похідної. Рівняння дотичної. Поняття нормалі до графіка функції та її рівняння. Економічний зміст похідної.
- •60. Похідна складної та оберненої функцій.
- •61. Диференціювання параметрично заданих функцій.
- •63. Похідна степенево-показникових функцій.
- •64. Похідні вищих порядків.
- •70.Екстремум функції, необхідня та достатня умови існування екстремуму.
- •71. Опуклість та вгнутість графіка функції. Необхідна і достатня умови опуклості (вгнутості) графіка функції.
- •72.Точки перегину графіка функції. Неохідна і достаня умови існування точок перегину.
- •73. Асимптоти графіка функції.
- •74.Функції кількох змінних. Основні поняття.
- •75. Функції двох змінних. Область визначення.
- •76.Лінії рівня функції двох змінних.
- •77. Частинний приріст і частинні похідні I-го порядку.
- •79. Використання повного диференціала до наближених значень.
- •80.Похідна за напрямом.
- •82.Частинні похідні вищих порядків. Теорема про рівність мішених похідних.
- •88. Частинний приріст і частинні похідні I-го порядку.
- •90. Частинні похідні вищих порядків. Теорема про рівність мішених похідних.
- •93.Обчислення наближеного значення в точці за допомогою повного диференціала.
- •94.Знаходження екстремуму ф-ції кількох змінних.
- •95. Знаходження умовного екстремуму.
- •97. Первісна для заданої функції,її осн. Властивості.
- •98. Невизначений інтеграл та його властивості.
- •99. Метод безпосереднього інтегрування невизначених інтегралів.
- •100.Знаходження невизначеного інтеграла методом заміни змінної.
- •101. Знаходження невизначеного інтеграла методом інтегрування частинами
- •104. Метод невизначених коефіцієнтів.
- •106. Інтегрування тригонометричних функцій.
- •109. Визначений інтеграл та його властивості.
- •110. Задача, що приводить до поняття визначеного інтеграла.
- •111. Формула Ньютона-Лейбніца для обчислення визначених інтегралів.
- •121. Поняття ряду. Збіжність ряду та його сума.
- •122. Властивості збіжних рядів.
- •123. Необхідна ознака збіжності ряду.
- •124. Еталонні ряди.
- •128.Радикальна ознака Коші.
- •129. Інтегральна ознака Коші.
- •130. Знакозмінні ряди. Ознака Лейбніца.
- •134. Радіус, інтервал, область збіжності ряду.
- •135. Ряд Тейлора.
- •136.Ряд Маклорена.
- •138. Використання рядів до наближених обчислень функцій.
- •139. Диференціальні рівняння. Основні поняття та означення.
- •140. Диф. Рівняння і порядку. Основіні поняття.
- •141. Диф.Рівняння з відокремлюваними змінними.
- •142.Задача Коші
- •143.Однорідні диференціальні рівняння першого порядку .
- •145. Диференціальні рівняння другого порядку. Основні поняття.
- •146. Диференціальні рівняння другого порядку, що допускають пониження порядку.
31. Еліпс : означення, рівняння, графік, вершини, півосі, фокуси, ексцентриситет, директриси.
Еліпсом називається геометричне місце точок площини, сума відстаней яких до двох заданих точок, які називаються фокусами еліпса, є виличиною сталою.
Е
ліпсом
називають лінію, яка в деякій декартовій
прямокутній системі координат
задається рівнянням:
Еліпс належить до кривих другого порядку.
Точки
і
називають
фокусами
еліпса, а відстань між ними — фокусною
відстанню, її позначають через
,
отже,
.
Суму відстаней від будь-якої точки
еліпса
до фокусів
і
позначимо
.
Тоді за означенням маємо:
.
Звідси можна сказати, що еліпс складається
з таких і тільки таких точок
,
які задовольняють умові:
Осі еліпса
Відрізок
,
що проходить через обидва фокуси
і
,
називають великою віссю еліпса, а
перпендикулярний йому відрізок
,
що перетинається з великою віссю в
центрі еліпса
–
відповідно його малою віссю. Довжина
цих відрізків відповідає умові
.
Еліпс симетричний відносно своїх осей
та центру.
Директриса та ексцентриситет
Число
це
ексцентриситет
еліпса, величина, що характеризує його
витягнутість; для еліпсу
.
Прямі, рівняння яких
називаються
директрисами
еліпса; співвідношення відстані від
будь-якої точки еліпса до найближчого
фокусу до відстані до найближчої
директриси стале і дорівнює ексцентриситету.
Зауважимо, що
величинами, які характеризують еліпс,
є велика і мала півосі
і
,
відстань
фокуса
від центру, ексцентриситет
.
Залежність між ними виражається
формулами:
.
Тому, щоб скласти рівняння еліпса, досить
знати або півосі
і
,
або одну піввісь і ексцентриситет і
т.д.
Якщо точки
і
збігаються,
то еліпс стає колом радіуса
.
При цьому
.
Отже, коло
є окремим випадком еліпса.
Вершини еліпса
Точки
перетину
еліпсу з осями прямокутної системи
координат, вибраної так щоб початок
координат був серединою відрізка
,
а вісь
збігалася
з прямою
,
називають вершинами еліпсу.
32. Гіпербола : означення, рівняння, графік, спряжена гіпербола, вершини, осі, фокуси, ексцентриситет, асимптоти, директриси.
Гіперболою називається геометричне місце точок площини, модуль різниці відстаней яких до двох заданих точок, що називаються фокусами гіперболи, є величиною сталою.
Гіпербола є невиродженою кривою другого порядку, яка задається рівнянням:[1]
де a > 0 та b > 0 — параметри. Таке рівняння називається канонічним рівнянням гіперболи.[2]
Ексцентриситетом гіперболи називаються відношення відстані між фокусами гіперболи до довжини її дійсної осі : 2с/2а = с/а.
33. Парабола : означення, рівняння, графік, спряжена гіпербола, вершина, фокус, ексцентриситет, директриса. Різновиди розміщення параболи на площині та її рівняння
Пара́бола (від грец. παραβολή) — геометричне місце точок, що рівновіддалені від точки і прямої. Одна з кривих другого порядку.
Точка зветься фокусом, а пряма - директрисою.
Канонічне рівняння параболи в прямокутній системі координат:
(або
,
якщо поміняти місцями осі).