
- •1. Матриці, основні поняття. Різновиди матриць.
- •2. Дії над матрицями. Властивості дій над матрицями.
- •3.Визначники квадратних матриць. Способи обчислення визначників.
- •4. . Визначник n-ого порядку. Теорема Лапласа.
- •5. Визначники.Властивості визначників.
- •6. Обернена матриця. Алгоритм оберненої матриці.
- •7. Мінори та алгебраїчні доповнення елементів.
- •8. Ранг матриці. Властивості рангу матриці. Елементарні перетворення матриці.
- •9. Основні поняття система n лінійних алгебраїчних рівнянь з n змінними. Правило Крамера. (n*n)
- •10. Матричний метод розв’язування слар.(метод оберненої матриці). Алгоритм розв’язування системи матричним методом. (n*n)
- •11.Теорема Кронекера-Капеллі. Алгоритм розв’язання слар.
- •12.Основні поняття системи m лінійних рівнянь з n змінними. Розв’язок слар методом Гаусса.
- •13.Метод Жордана-Гаусса.Алгоритм кроку перетворення Жордано-Гаусса.
- •14. Скалярний векторний добуток. Властивості векторного добутку.
- •16. Векторний простір, його розмірність,базис. Розклад вектора за базисом. Лінійно залежні і лінійно незалежні системи векторів.
- •21.Кут між двома прямими заданими канонічним рівнянням. Умови паралельності і перпендикулярності прямих.
- •22. Рівняння прямої з кутовим коефіцієнтом. Відстань від точки до прямої.
- •24. Різновиди рівняння площини у просторі: за трьома точками, у відрізках на осях, нормальне.
- •26. Загальне рівняння площини і його дослідження.
- •31. Еліпс : означення, рівняння, графік, вершини, півосі, фокуси, ексцентриситет, директриси.
- •Вершини еліпса
- •32. Гіпербола : означення, рівняння, графік, спряжена гіпербола, вершини, осі, фокуси, ексцентриситет, асимптоти, директриси.
- •33. Парабола : означення, рівняння, графік, спряжена гіпербола, вершина, фокус, ексцентриситет, директриса. Різновиди розміщення параболи на площині та її рівняння
- •34.Поняття числової послідовності: формула n-го члена,зростаюча,спадна,обмежена послідовність.Поняття границі числової послідовності.
- •35.Основні властивості границі послідовності
- •32. Рівняння площини, що проходить через задану точку перпендикулярно до заданого вектора.
- •33. Кут між площинами. Умови паралельності і перпендикулярності двох площин. Відстань від точки до площини.
- •34. Різновиди рівняння в просторі: канонічне, параметричні, за двома точками. Пряма як перетин двох площин.
- •35. Кут між прямими в просторі. Кут між прямою і площиною. Умови паралельності і перпендикулярності прямої і площини. Знаходження точки перетину прямої і площини.
- •36. Поняття кривих ліній другого порядку. Дослідження рівняння другого порядку. Коло.
- •37. Еліпс: означення, рівняння, графік, вершини, півосі, фокуси, ексцентриситет, директриси.
- •38. Гіпербола: означення, рівняння, графік, спряжена гіпербола, вершини, осі, фокуси, ексцентриситет, асимптоти, директриси.
- •39. Парабола: означення, рівняння, графік,вершина, фокус, ексцентриситет, директриса. Різновиди розміщення параболи на площині та її рівняння.
- •40. Поняття числової послідовності, формула n-го члена, зростаюча, спадна, обмежена послідовність. Поняття границі числової послідовності.
- •45. Теорема про зв'язок між нескінченно малими та нескінченно великими функціями. Теорема про зв'язок між нескінченно малими функціями та границею функції.
- •123.Необхідна ознака збіжності ряду.
- •148. Лінійні однорідні диференціальні рівняння другого порядку зі сталими коефіцієнтами.
- •149.Лінійні неоднорідні рівняння другого порядку зі сталими коефіцієнтами.
- •46. Еквівалентні нескінчені малі величини. Ланцюжок еквівалентних нескінченно малих величин. Теорема про застосування еквівалентних нескінченно малих величин про обчислення границь функцій.
- •47. Властивості функцій, які мають границю в точці: єдність границі, граничний перехід у нерівності, границя проміжної фукції, обмеженість функції в точці.
- •48. Властивості границь функції: границя сталої, суми, добутку, частки функцій, границя степеневої функції.
- •49. Розкриття невизначеностей, при застосуванні ірраціональних функцій та многочленів під час обчислення границь функцій.
- •50. Перша і друга важливі границі та наслідки з них.
- •51. Неперервність функції в точці: означення Коші та означення в термінах приростів функцій та аргументу. Застосування поняття неперервності при обчисленні границь функцій.
- •52. Властивості функцій, неперервних у точці. Теорема про неперервність елементарних функцій.
- •53. Властивості функцій, неперервних на відрізку. Геометрична інтерпретація цих властивостей.
- •55. Задачі, які приводять до поняття похідної: задача про продуктивність праці, задача про кутовий коефіцієнт дотичної.
- •56. Означеня похідної. Диференційованість і неперервність функції в точці і на проміжку.
- •57. Правила диференціювання сталої, суми, добутку, частки функцій та наслідки з них.
- •59. Геометричний зміст похідної. Рівняння дотичної. Поняття нормалі до графіка функції та її рівняння. Економічний зміст похідної.
- •60. Похідна складної та оберненої функцій.
- •61. Диференціювання параметрично заданих функцій.
- •63. Похідна степенево-показникових функцій.
- •64. Похідні вищих порядків.
- •70.Екстремум функції, необхідня та достатня умови існування екстремуму.
- •71. Опуклість та вгнутість графіка функції. Необхідна і достатня умови опуклості (вгнутості) графіка функції.
- •72.Точки перегину графіка функції. Неохідна і достаня умови існування точок перегину.
- •73. Асимптоти графіка функції.
- •74.Функції кількох змінних. Основні поняття.
- •75. Функції двох змінних. Область визначення.
- •76.Лінії рівня функції двох змінних.
- •77. Частинний приріст і частинні похідні I-го порядку.
- •79. Використання повного диференціала до наближених значень.
- •80.Похідна за напрямом.
- •82.Частинні похідні вищих порядків. Теорема про рівність мішених похідних.
- •88. Частинний приріст і частинні похідні I-го порядку.
- •90. Частинні похідні вищих порядків. Теорема про рівність мішених похідних.
- •93.Обчислення наближеного значення в точці за допомогою повного диференціала.
- •94.Знаходження екстремуму ф-ції кількох змінних.
- •95. Знаходження умовного екстремуму.
- •97. Первісна для заданої функції,її осн. Властивості.
- •98. Невизначений інтеграл та його властивості.
- •99. Метод безпосереднього інтегрування невизначених інтегралів.
- •100.Знаходження невизначеного інтеграла методом заміни змінної.
- •101. Знаходження невизначеного інтеграла методом інтегрування частинами
- •104. Метод невизначених коефіцієнтів.
- •106. Інтегрування тригонометричних функцій.
- •109. Визначений інтеграл та його властивості.
- •110. Задача, що приводить до поняття визначеного інтеграла.
- •111. Формула Ньютона-Лейбніца для обчислення визначених інтегралів.
- •121. Поняття ряду. Збіжність ряду та його сума.
- •122. Властивості збіжних рядів.
- •123. Необхідна ознака збіжності ряду.
- •124. Еталонні ряди.
- •128.Радикальна ознака Коші.
- •129. Інтегральна ознака Коші.
- •130. Знакозмінні ряди. Ознака Лейбніца.
- •134. Радіус, інтервал, область збіжності ряду.
- •135. Ряд Тейлора.
- •136.Ряд Маклорена.
- •138. Використання рядів до наближених обчислень функцій.
- •139. Диференціальні рівняння. Основні поняття та означення.
- •140. Диф. Рівняння і порядку. Основіні поняття.
- •141. Диф.Рівняння з відокремлюваними змінними.
- •142.Задача Коші
- •143.Однорідні диференціальні рівняння першого порядку .
- •145. Диференціальні рівняння другого порядку. Основні поняття.
- •146. Диференціальні рівняння другого порядку, що допускають пониження порядку.
106. Інтегрування тригонометричних функцій.
Тригонометри́чні фу́нкції — це функції кута, особливо корисні при дослідженні та моделюванні періодичних подій. Вони можуть бути визначені як відношення двох сторін трикутника що містить кут, або як відношення координат точок по колу, або, більш загально, як нескінченні ряди, або як розв'язок диференційного рівняння.
Інтеграли
типу
,
,
обчислюються за допомогою відомих
тригонометричних формул:
,
,
.
Функцію
із змінними
і
,
над якими виконуються раціональні дії
(додавання, віднімання, множення і
ділення) прийнято позначати
,
де
– знак раціональної функції.
Обчислення
невизначених інтегралів типу
зводиться до
обчислення
інтегралів від раціональної функції
підстановкою
,
яка називається універсальною.
107-108. Інтегрування найпростіших раціональних дробів.
Дріб називають раціональним, якщо його чисель-ник та знаменник е багаточленами.
Інтеграли від найпростіших раціональних дробів І-го та П-го типів знаходять методом безпосереднього інтегрування. При інтегруванні найпростішого дробу Ш-го типу треба спочат-ку в знаменнику виділити повний квадрат, а потім той вираз, що під квадратом, замінити через нову змінну. Інтеграл від найпростішого дробу типу IV шляхом повторного інтегрування частинами зводять до інтеграла від найпростішого дро-бу типуIII.
Будь-який правильний раціональний дріб розкла-дається на суму найпростіших раціональних дробів, коефіцієнти яких можна знайти методом невизначених коефіцієнтів.
Отже, інтегрування раціонального дробу зводиться до інтегруван-ня багаточлена Мп_т (х) (при п > т) та суми найпростіших дробів. Відмітимо, що вигляд найпростіших дробів визначається коренями знаменника Qm(x).
109. Визначений інтеграл та його властивості.
Визначений інтеграл — в математичному аналізі це інтеграл функції з вказаною областю інтегрування. Визначений інтеграл є неперервним функціоналом, лінійним по підінтегральним функціям і адитивним по області інтегрування. У найпростішому випадку область інтегрування — це відрізок числової осі. Геометричний смисл цього визначеного інтеграла — це площа криволінійної фігури, обмеженої віссю абсцис, двома вертикалями на краях відрізка і кривою графіка функції.
Властивості:
1.Сталий множник можна винести за знак визначеного інтеграла.
2.Визначений інтеграл віл алгебраїчної суми скінченої кількості функцій дорівнює такій самій алгебраїчній сумі визначених інтегралів від кожного доданка.
3.Якщо змінити межі інтегрування то визначений інтеграл змінює свій знак на протилежний.
4.Визначений інтеграл з рівними межами дорівнює нулю.
110. Задача, що приводить до поняття визначеного інтеграла.
Етап
1. Розбиття фігури на ряд вузьких смужок,
паралельних осі. Площу кожної із смужок
можна обчислювати наближено, замінюючи
її або прямокутником, верхня основа
якого проходить через точку на кривій
і знаходиться не вище за криву, або
трапецією , обмеженою зверху хордою ,
що сполучає кінці відрізку кривої .
Етап
2. Сума площ усіх прямокутників або
трапецоїдних смужок дасть наближене
значення площ криволінійної трапеції.
Очевидно, що ця площа буде обчислена
тим точніше, чим меншою буде ширина
кожної смужки .
Етап 3. Для точного
обчислення площі криволінійної трапеції
слід обчислити границю вказаної
суми, коли ширина кожної смужки
прямує до нуля . Точне значення площі
криволінійної трапеції позначають
символом
,
який називається визначеним інтегралом
у проміжку від
до
функції
і
вперше введений Й.Бернуллі
.