
- •1. Матриці, основні поняття. Різновиди матриць.
- •2. Дії над матрицями. Властивості дій над матрицями.
- •3.Визначники квадратних матриць. Способи обчислення визначників.
- •4. . Визначник n-ого порядку. Теорема Лапласа.
- •5. Визначники.Властивості визначників.
- •6. Обернена матриця. Алгоритм оберненої матриці.
- •7. Мінори та алгебраїчні доповнення елементів.
- •8. Ранг матриці. Властивості рангу матриці. Елементарні перетворення матриці.
- •9. Основні поняття система n лінійних алгебраїчних рівнянь з n змінними. Правило Крамера. (n*n)
- •10. Матричний метод розв’язування слар.(метод оберненої матриці). Алгоритм розв’язування системи матричним методом. (n*n)
- •11.Теорема Кронекера-Капеллі. Алгоритм розв’язання слар.
- •12.Основні поняття системи m лінійних рівнянь з n змінними. Розв’язок слар методом Гаусса.
- •13.Метод Жордана-Гаусса.Алгоритм кроку перетворення Жордано-Гаусса.
- •14. Скалярний векторний добуток. Властивості векторного добутку.
- •16. Векторний простір, його розмірність,базис. Розклад вектора за базисом. Лінійно залежні і лінійно незалежні системи векторів.
- •21.Кут між двома прямими заданими канонічним рівнянням. Умови паралельності і перпендикулярності прямих.
- •22. Рівняння прямої з кутовим коефіцієнтом. Відстань від точки до прямої.
- •24. Різновиди рівняння площини у просторі: за трьома точками, у відрізках на осях, нормальне.
- •26. Загальне рівняння площини і його дослідження.
- •31. Еліпс : означення, рівняння, графік, вершини, півосі, фокуси, ексцентриситет, директриси.
- •Вершини еліпса
- •32. Гіпербола : означення, рівняння, графік, спряжена гіпербола, вершини, осі, фокуси, ексцентриситет, асимптоти, директриси.
- •33. Парабола : означення, рівняння, графік, спряжена гіпербола, вершина, фокус, ексцентриситет, директриса. Різновиди розміщення параболи на площині та її рівняння
- •34.Поняття числової послідовності: формула n-го члена,зростаюча,спадна,обмежена послідовність.Поняття границі числової послідовності.
- •35.Основні властивості границі послідовності
- •32. Рівняння площини, що проходить через задану точку перпендикулярно до заданого вектора.
- •33. Кут між площинами. Умови паралельності і перпендикулярності двох площин. Відстань від точки до площини.
- •34. Різновиди рівняння в просторі: канонічне, параметричні, за двома точками. Пряма як перетин двох площин.
- •35. Кут між прямими в просторі. Кут між прямою і площиною. Умови паралельності і перпендикулярності прямої і площини. Знаходження точки перетину прямої і площини.
- •36. Поняття кривих ліній другого порядку. Дослідження рівняння другого порядку. Коло.
- •37. Еліпс: означення, рівняння, графік, вершини, півосі, фокуси, ексцентриситет, директриси.
- •38. Гіпербола: означення, рівняння, графік, спряжена гіпербола, вершини, осі, фокуси, ексцентриситет, асимптоти, директриси.
- •39. Парабола: означення, рівняння, графік,вершина, фокус, ексцентриситет, директриса. Різновиди розміщення параболи на площині та її рівняння.
- •40. Поняття числової послідовності, формула n-го члена, зростаюча, спадна, обмежена послідовність. Поняття границі числової послідовності.
- •45. Теорема про зв'язок між нескінченно малими та нескінченно великими функціями. Теорема про зв'язок між нескінченно малими функціями та границею функції.
- •123.Необхідна ознака збіжності ряду.
- •148. Лінійні однорідні диференціальні рівняння другого порядку зі сталими коефіцієнтами.
- •149.Лінійні неоднорідні рівняння другого порядку зі сталими коефіцієнтами.
- •46. Еквівалентні нескінчені малі величини. Ланцюжок еквівалентних нескінченно малих величин. Теорема про застосування еквівалентних нескінченно малих величин про обчислення границь функцій.
- •47. Властивості функцій, які мають границю в точці: єдність границі, граничний перехід у нерівності, границя проміжної фукції, обмеженість функції в точці.
- •48. Властивості границь функції: границя сталої, суми, добутку, частки функцій, границя степеневої функції.
- •49. Розкриття невизначеностей, при застосуванні ірраціональних функцій та многочленів під час обчислення границь функцій.
- •50. Перша і друга важливі границі та наслідки з них.
- •51. Неперервність функції в точці: означення Коші та означення в термінах приростів функцій та аргументу. Застосування поняття неперервності при обчисленні границь функцій.
- •52. Властивості функцій, неперервних у точці. Теорема про неперервність елементарних функцій.
- •53. Властивості функцій, неперервних на відрізку. Геометрична інтерпретація цих властивостей.
- •55. Задачі, які приводять до поняття похідної: задача про продуктивність праці, задача про кутовий коефіцієнт дотичної.
- •56. Означеня похідної. Диференційованість і неперервність функції в точці і на проміжку.
- •57. Правила диференціювання сталої, суми, добутку, частки функцій та наслідки з них.
- •59. Геометричний зміст похідної. Рівняння дотичної. Поняття нормалі до графіка функції та її рівняння. Економічний зміст похідної.
- •60. Похідна складної та оберненої функцій.
- •61. Диференціювання параметрично заданих функцій.
- •63. Похідна степенево-показникових функцій.
- •64. Похідні вищих порядків.
- •70.Екстремум функції, необхідня та достатня умови існування екстремуму.
- •71. Опуклість та вгнутість графіка функції. Необхідна і достатня умови опуклості (вгнутості) графіка функції.
- •72.Точки перегину графіка функції. Неохідна і достаня умови існування точок перегину.
- •73. Асимптоти графіка функції.
- •74.Функції кількох змінних. Основні поняття.
- •75. Функції двох змінних. Область визначення.
- •76.Лінії рівня функції двох змінних.
- •77. Частинний приріст і частинні похідні I-го порядку.
- •79. Використання повного диференціала до наближених значень.
- •80.Похідна за напрямом.
- •82.Частинні похідні вищих порядків. Теорема про рівність мішених похідних.
- •88. Частинний приріст і частинні похідні I-го порядку.
- •90. Частинні похідні вищих порядків. Теорема про рівність мішених похідних.
- •93.Обчислення наближеного значення в точці за допомогою повного диференціала.
- •94.Знаходження екстремуму ф-ції кількох змінних.
- •95. Знаходження умовного екстремуму.
- •97. Первісна для заданої функції,її осн. Властивості.
- •98. Невизначений інтеграл та його властивості.
- •99. Метод безпосереднього інтегрування невизначених інтегралів.
- •100.Знаходження невизначеного інтеграла методом заміни змінної.
- •101. Знаходження невизначеного інтеграла методом інтегрування частинами
- •104. Метод невизначених коефіцієнтів.
- •106. Інтегрування тригонометричних функцій.
- •109. Визначений інтеграл та його властивості.
- •110. Задача, що приводить до поняття визначеного інтеграла.
- •111. Формула Ньютона-Лейбніца для обчислення визначених інтегралів.
- •121. Поняття ряду. Збіжність ряду та його сума.
- •122. Властивості збіжних рядів.
- •123. Необхідна ознака збіжності ряду.
- •124. Еталонні ряди.
- •128.Радикальна ознака Коші.
- •129. Інтегральна ознака Коші.
- •130. Знакозмінні ряди. Ознака Лейбніца.
- •134. Радіус, інтервал, область збіжності ряду.
- •135. Ряд Тейлора.
- •136.Ряд Маклорена.
- •138. Використання рядів до наближених обчислень функцій.
- •139. Диференціальні рівняння. Основні поняття та означення.
- •140. Диф. Рівняння і порядку. Основіні поняття.
- •141. Диф.Рівняння з відокремлюваними змінними.
- •142.Задача Коші
- •143.Однорідні диференціальні рівняння першого порядку .
- •145. Диференціальні рівняння другого порядку. Основні поняття.
- •146. Диференціальні рівняння другого порядку, що допускають пониження порядку.
1. Матриці, основні поняття. Різновиди матриць.
Прямокутна таблиця чисел Аij,де і=1,2…m,та j=1,2… n,яка складається з m рядків та n стовпців називається матрицею. Якщо m=n ,то матриця називається квадратною.Кількість рядків квадратної матриці називається її порядком.Матриця,в якої лише один рядок називається матрицею-рядком,а матриця ,в якої лише один стовпець-матрицею-стовпцем.Матриця ,в якої всі елементи дорівнюють 0,називається нульовою.Уквадратних матрицях виділяють головну та побічну діагоналі .Квадратна матриця називається діагональною ,якщо всі її елементи ,крім елементів головної діагоналі,дорівнюють 0.Діагональна матриця називається скалярною,якщо всі елементи гголовної діагоналі рівні між собою. Матриця А називається узгодженою матриці В,якщо кількість стовпців матриці А дорівнює кількості рядків матриці В.
2. Дії над матрицями. Властивості дій над матрицями.
Сумою двох матриць Аm*n=(aij) i Bm*n=(bij) однакових розмірів називається матриця Cm*n=( aij+ bij).Для дії додавання є такі властивості:
А+В=В+А-комутативність додавання
(А+В)+С=А+(В+С)-асоціативність додавання
А+О=А
Добутком матриці Аm*n=(aij) на матрицю Bm*n=(bij) називається така матриця Cm*n=cij,у якої елементи cij дорівнюють сумі добутків елементів і-го рядка матриці А на відповідні елементи j – стовпця матриці В.
Множення двох матриць означається лише для узгоджених матриць.Матриця А називається узгодженою матриці В,якщо кількість стовпців матриці А дорівнює кількості рядків матриці В.
Властивості:
1.А*0=0,0*А=0
2.(АВ)С=А(ВС)-асоціативність множення
3.(А+В)С=АС+ВС
4.АЕ=А,ЕА=А
Добутком матриці Аm*n=(aij)на числа k називається матриця (kaij)тієї самої розмірності.
3.Визначники квадратних матриць. Способи обчислення визначників.
Квадратній
матриці А n-ого
порядку можна поставити у відповідність
число det
A
(або
,
або
),
яке називають визначником цієї матриці.
1.При
n
= 1 А=(
),
det
A
=
2.При
n
= 2 А = (
),
det
A=
=
-
Визначник матриці А також назив. її детермінантом.
При
обчисленні визначників третього порядку
зручно користуватися правилом трикутника
. За іншою схемою дописуються два перших
стовпчики до матриці А. У результаті
отримують прямокутну матрицю розміром
3
5.
Тоді додатні та від’ємні доданки беруть
за схемою:
Квадратній матриці А n-го порядку можна поставити у відповідність число detА,яке називається визначником цієї матриці.При обчисленні визначників третього порядку зручно користуватися правилом трикутника .Для обчислення визначника 2-го порядку потрібно від добутку елементів,що стоять на головній діагоналі ,відняти добуток елементів ,що стоять на побіжній діагоналі.Також використовується метод Саррюса:дописується 2 перших стовпчиків до матриці А,тоді додані та від’ємні доданки беруться за схемою. і зведенням до трикутного виду і Лапласа.
4. . Визначник n-ого порядку. Теорема Лапласа.
Матрицю А n-ого порядку можна поставити у відповідність число det A (або , або ), яке називають визначником цієї матриці.
1.При n = 1 А=( ), det A =
2.При n = 2 А = ( ), det A= = -
Визначник матриці А також назив. її детермінантом.
Теорема
Лапласа. Визначник
n-ого
порядку дорівнює сумі добутків елементів
будь-якого рядка чи стовпця на їх
алгебраїчні доповнення:
Квадратній матриці А n-го порядку можна поставити у відповідність число detА,яке називається визначником цієї матриці. Правило Лапласа:Визначник дорівнює сумі добутків елементів будь-якого рядка (стовпця )помноженні на відповідні алгебраїчні доповнення. Алгебраїчні доповнення Аij елемента aij
називають мінор цього елемента ,взятий із знаком «плюс»,якщо сума номерів рядка і стовпчика –число парне ,та зі знаком «мінус»,якщо непарне.Мінором Мij елемента aij визначника n-го порядку називається визначник ( n-1)-го порядку,який одержимо з даного визначника шляхом викреслювання і-го рядка та j-го стовпця,на пнрнтині яких знаходиться елемент aij.