
- •Монохроматическое излучение?
- •Три атрибута цвета?
- •Что такое цветовой тон?
- •Основные законы колориметрии?
- •Аддитивная цветовая модель rgb?
- •Пропорции смешения цветов и их трехмерное представление?
- •Трехцветные коэффициенты смешивания rgb?
- •Недостатки и достоинства rgb?
- •Цветовая модель cmy?
- •Цветовая модель hsv?
- •Особенности монохромных моделей?
- •Компонентное кодирование цветов. Палитра?
- •Особенности цветопередачи в полиграфии?
- •Понятие дизеринга?
- •Простейший дизеринг?
- •Определение количества градаций цвета?
- •Формула цвета для двух компонент в зависимости от размера ячейки?
- •Линиатура растра?
- •Реализация дизеринга в графической системе?
- •Диагональные растры?
- •Частотная модуляция?
- •Записать в общем виде выражение аффинного преобразование координат?
- •Какие преобразования включают аффинные?
- •Записать в общем виде выражение для поворота угла ?
- •Записать в матричном виде аффинные преобразования?
- •Что такое однородные координаты?
- •Показать вид матрицы вращения в однородных координатах?
- •Показать вид матрицы растяжения-сжатия и отражения вокруг оси Оу в однородных координатах?
- •Показать вид матрицы переноса в однородных координатах?
- •Выписать в матричном виде преобразование для поворота вокруг произвольной точки на угол и указать, что означает каждая из матриц?
- •Выписать вид матриц для вращения в пространстве?
- •Указать, в чем состоит смысл проектирования?
- •Какая проекция называется ортографической?
- •Какая проекция называется аксонометрической?
- •Какая проекция называется изометрической?
- •Какая проекция называется косоугольной?
- •Какая проекция называется кабинетной?
- •Выписать матрицы проектирования вдоль координатных осей?
- •Какую информацию нужно задать для проективного преобразования пространственного объекта?
- •Привести вид матрицы проектирования для косоугольной проекции?
- •Выписать вид матрицы проектирования в однородных координатах и докажите, что она осуществляет проектирование в двумерные координаты?
- •Понятие соседей и связности?
- •Принцип работы четырехсвязного алгоритма Брезенхэма?
- •Принцип работы восьмисвязного алгоритма Брезенхэма?
- •Пример восьмисьмисвязного алгоритма?
- •Построение окружности?
- •Построение эллипса?
- •Р ис.6.4.Четверть эллипса с касательной и нормалью
- •Кривая Безье?
- •Геометрический алгоритм?
- •Задача вывода фигур?
- •Простейший алгоритм закрашивания?
- •Волновой алгоритм закрашивания?
- •Алгоритм закрашивания линиями?
- •Заполнение прямоугольника и круга?
- •Заполнение полигонов?
- •Учет вершин полигона?
- •Ускорение работы алгоритма?
- •Аналитическая модель описания поверхности?
- •Аппроксимация сплайна?
- •Кубический сплайн?
- •Векторная полигональная модель?
- •Первый способ описания структур данных в векторной модели?
- •Второй и третий способы описания структур данных в векторной модели?
- •Достоинства и недостатки векторной модели?
- •Воксельная модель?
- •Отражение света?
- •Закон Снеллиуса?
- •Диффузное преломление и отражение?
- •Распределение энергии при отражении?
- •Распределение энергии при преломлении?
- •Описание поверхности, состоящей из случайно ориентированных микрограней?
- •Преломление света поверхностью, состоящей из микрозеркал?
- •Моделирование общего случая освещенности?
- •Задача удаления невидимых линий и поверхностей?
- •Общие характеристики методов удаления невидимых линий и поверхностей?
- •Типы когерентности?
- •Линии горизонта?
- •Методы плавающего горизонта?
- •Сортировка граней по глубине?
- •Метод z-буфера?
- •Эвристические концепции невидимости?
- •Отличие и сходство видимости в сценах для выпуклых и невыпуклых фигур?
- •Постановка задачи удаления невидимых граней выпуклого многогранника?
- •Алгоритм удаления невидимых граней выпуклого многогранника?
- •Количественная невидимость?
- •Общие свойства функции количественной невидимости?
- •Свойство функции количественной невидимости в особых точках?
Особенности цветопередачи в полиграфии?
Современные растровые дисплеи достаточно качественно отображают миллионы цветов, благодаря чему без проблем можно отображать цветные фотографии. Но для растровых устройств, которые печатают на бумаге, положение совсем другое. Устройства печати обычно имеют высокую разрешающую способность (dpi), часто на порядок большую, чем дисплеи. Однако нельзя непосредственно воссоздать даже сотню градаций серого для пикселов черно-белых фотографий, не говоря уже о миллионах цветов. Чтобы убедиться в этом достаточно, например, рассмотреть под лупой изображение любой напечатанной фотографии. В большинстве случаев можно увидеть, что оттенки цветов (для цветных изображений) или полутоновые градации (для черно-белых) имитируются комбинированием, смесью точек. Чем качественнее полиграфическое оборудование, тем меньше отдельные точки и расстояние между ними.
Иногда отдельные точки на фотографии нельзя различить даже с помощью лупы. В таких случаях – или нам посчастливилось увидеть печать многими сотнями красок, или разрешающая способность устройства печати очень высокая. Оба варианта пока что не встречаются. Однако, безусловно, с течением времени будут изобретены способы печати если не многими тысячами красок (что маловероятно), то хотя бы красками, которые плавно изменяют свой цвет, или будет изобретена бумага с соответствующими свойствами.
Для устройств печати на бумаге проблема количества красок достаточно важна. В полиграфии для цветных изображений обычно используют три цветных краски и одну черную, что в смеси дает восемь цветов (включая черный и белый цвет бумаги). Встречаются образцы печати большим количеством красок – например, карты, напечатанные с использованием восьми красок, однако такая технология печати намного сложнее. Состояние дел с цветной печатью можно оценить также на примере относительно простых офисных принтеров. Недавно появились струйные принтеры с шестью цветными красками вместо трех. В таких принтерах в состав обычных CMYK-красок добавлены бледно-голубая, бледно-пурпурная и бледно-желтая краски (семицветные принтеры). В шестицветных принтерах отсутствует бледно-желтая краска. Увеличение количества красок значительно улучшило качество печати, однако и этого пока явно мало.
Если графическое устройство не способно воссоздавать достаточное количество цветов, тогда используют растрирование – независимо от того, растровое это устройство или не растровое. В полиграфии растрирование известно давно. Оно использовалось несколько столетий тому назад для печати гравюр. В гравюрах изображение создается многими штрихами, причем полутоновые градации реализованы или штрихами различной толщины на одинаковом расстоянии, или штрихами одинаковой толщины с переменной густотою расположения. Такие способы используют особенности человеческого зрения и в первую очередь – пространственную интеграцию. Если достаточно близко расположить маленькие точки различных цветов, то они будут восприниматься как одна точка с некоторым усредненным цветом. Если на плоскости густо расположить много маленьких разноцветных точек, то будет создана визуальная иллюзия закрашивания плоскости некоторым усредненным цветом. Однако если увеличивать размеры точек и (или) расстояние между ними, то иллюзия сплошного закрашивания исчезает – включается другая система человеческого зрения, обеспечивающая нашу способность различать отдельные объекты, подчеркивать контуры.