
- •Монохроматическое излучение?
- •Три атрибута цвета?
- •Что такое цветовой тон?
- •Основные законы колориметрии?
- •Аддитивная цветовая модель rgb?
- •Пропорции смешения цветов и их трехмерное представление?
- •Трехцветные коэффициенты смешивания rgb?
- •Недостатки и достоинства rgb?
- •Цветовая модель cmy?
- •Цветовая модель hsv?
- •Особенности монохромных моделей?
- •Компонентное кодирование цветов. Палитра?
- •Особенности цветопередачи в полиграфии?
- •Понятие дизеринга?
- •Простейший дизеринг?
- •Определение количества градаций цвета?
- •Формула цвета для двух компонент в зависимости от размера ячейки?
- •Линиатура растра?
- •Реализация дизеринга в графической системе?
- •Диагональные растры?
- •Частотная модуляция?
- •Записать в общем виде выражение аффинного преобразование координат?
- •Какие преобразования включают аффинные?
- •Записать в общем виде выражение для поворота угла ?
- •Записать в матричном виде аффинные преобразования?
- •Что такое однородные координаты?
- •Показать вид матрицы вращения в однородных координатах?
- •Показать вид матрицы растяжения-сжатия и отражения вокруг оси Оу в однородных координатах?
- •Показать вид матрицы переноса в однородных координатах?
- •Выписать в матричном виде преобразование для поворота вокруг произвольной точки на угол и указать, что означает каждая из матриц?
- •Выписать вид матриц для вращения в пространстве?
- •Указать, в чем состоит смысл проектирования?
- •Какая проекция называется ортографической?
- •Какая проекция называется аксонометрической?
- •Какая проекция называется изометрической?
- •Какая проекция называется косоугольной?
- •Какая проекция называется кабинетной?
- •Выписать матрицы проектирования вдоль координатных осей?
- •Какую информацию нужно задать для проективного преобразования пространственного объекта?
- •Привести вид матрицы проектирования для косоугольной проекции?
- •Выписать вид матрицы проектирования в однородных координатах и докажите, что она осуществляет проектирование в двумерные координаты?
- •Понятие соседей и связности?
- •Принцип работы четырехсвязного алгоритма Брезенхэма?
- •Принцип работы восьмисвязного алгоритма Брезенхэма?
- •Пример восьмисьмисвязного алгоритма?
- •Построение окружности?
- •Построение эллипса?
- •Р ис.6.4.Четверть эллипса с касательной и нормалью
- •Кривая Безье?
- •Геометрический алгоритм?
- •Задача вывода фигур?
- •Простейший алгоритм закрашивания?
- •Волновой алгоритм закрашивания?
- •Алгоритм закрашивания линиями?
- •Заполнение прямоугольника и круга?
- •Заполнение полигонов?
- •Учет вершин полигона?
- •Ускорение работы алгоритма?
- •Аналитическая модель описания поверхности?
- •Аппроксимация сплайна?
- •Кубический сплайн?
- •Векторная полигональная модель?
- •Первый способ описания структур данных в векторной модели?
- •Второй и третий способы описания структур данных в векторной модели?
- •Достоинства и недостатки векторной модели?
- •Воксельная модель?
- •Отражение света?
- •Закон Снеллиуса?
- •Диффузное преломление и отражение?
- •Распределение энергии при отражении?
- •Распределение энергии при преломлении?
- •Описание поверхности, состоящей из случайно ориентированных микрограней?
- •Преломление света поверхностью, состоящей из микрозеркал?
- •Моделирование общего случая освещенности?
- •Задача удаления невидимых линий и поверхностей?
- •Общие характеристики методов удаления невидимых линий и поверхностей?
- •Типы когерентности?
- •Линии горизонта?
- •Методы плавающего горизонта?
- •Сортировка граней по глубине?
- •Метод z-буфера?
- •Эвристические концепции невидимости?
- •Отличие и сходство видимости в сценах для выпуклых и невыпуклых фигур?
- •Постановка задачи удаления невидимых граней выпуклого многогранника?
- •Алгоритм удаления невидимых граней выпуклого многогранника?
- •Количественная невидимость?
- •Общие свойства функции количественной невидимости?
- •Свойство функции количественной невидимости в особых точках?
Преломление света поверхностью, состоящей из микрозеркал?
Понятно, что все рассмотренные случаи являются идеализациями. В действительности нет ни идеальных зеркал, ни идеально гладких поверхностей. Поэтому на практике обычно что поверхность состоит из множества случайно ориентированных плоских идеальных микрозеркал (микрограней) сзаданным законом распределения
(5)
Преломление света поверхностью, состоящей из микрозеркал, рассматривается совершенно аналогично. С использованием соотношения (5) можно построить формулу, полностью описывающую энергию (и отраженную, и преломленную) в заданном направлении. Функция, показывающая, какая именно доля энергии, пришедшей в направлении, задаваемом вектором 1, уходит в направлении, задаваемом вектором ν, называется двунаправленной функций отражения (Bidirectional Reflection Distribution Function - BRDF), Для поверхностей, состоящих из множества микрограней, BRDF задается выражением (5).
В случае идеальной диффузной поверхности функция BRDF постоянна, а в случае идеальной зеркальной поверхности задается при помощи δ-функции Дирака.
B связи с тем что вычисление BRDF по формуле (5) оказывается слишком сложным, на практике обычно используются более простые формулы, например такая:
(6)
В общем случае BRDF удовлетворяет условию симметричности
Обозначим через Rn (a) оператор поворота вокруг вектора нормали n на угол a.
Если для всех а выполняется равенство
то такой материал называется изотропным, и анизотропным в противном случае. В даль нейшем мы будем рассматривать только изотропные материалы.
Несмотря на то что коэффициенты Френеля заметно влияют на степень реалистичности изображения, на практике их применяют очень редко. Дело в том, что их использование наталкивается на ряд серьезных препятствий, одним из которых является сложность вычисления, а другим - отсутствие точной информации о зависимости величин, входящих в состав формулы, от длины волны λ. Поэтому часто вместо формулы (6) используется более простая формула
.
Моделирование общего случая освещенности?
В общем случае освещенность разбивается на непосредственную освещенность (отраженный и преломленный свет, идущие непосредственно от источников) и вторичную освещенность (отраженный и преломленный свет, идущие от других по верхностей).
Здесь мы рассмотрим модели, учитывающие только первичную освещенность (более сложные модели будут рассмотрены в главах, посвященных методам трасси ровки лучей и излучательности).
Для компенсации неучтенной вторичной освещенности вводится так называемая фоновая освещенность - равномерная освещенность, идущая со всех сторон и ни от чего не зависящая. Кроме того, считается, что каждый материал проявляет как диффузные, так и зеркальные свойства (с заданными весами). Поэтому в итоговую формулу входят члены трех видов - отвечающие за фоновую освещенность, за диффузную освещенность и за зеркальную (микрофасетную) освещенность. Простейшую модель освещенности можно описать при помощи соотношения
,
где
- интенсивность фонового освещения,
-
интенсивность i-го
источника света,
- цвет в точке Р,
Кa - коэффициент фонового освещения,
Кd - коэффициент диффузного освещении,
Кs - коэффициент зеркального освещения,
n - вектор внешней нормали в точке Р,
1i - единичный вектор направления из точки Р на i-й источник света.
Иногда используется так называемая металлическая модель, учитывающая тот факт, что для металла (в отличие от пластика) цвет блика совпадает с цветом металла. Металлическая модель задается следующим соотношением:
.