
- •Монохроматическое излучение?
- •Три атрибута цвета?
- •Что такое цветовой тон?
- •Основные законы колориметрии?
- •Аддитивная цветовая модель rgb?
- •Пропорции смешения цветов и их трехмерное представление?
- •Трехцветные коэффициенты смешивания rgb?
- •Недостатки и достоинства rgb?
- •Цветовая модель cmy?
- •Цветовая модель hsv?
- •Особенности монохромных моделей?
- •Компонентное кодирование цветов. Палитра?
- •Особенности цветопередачи в полиграфии?
- •Понятие дизеринга?
- •Простейший дизеринг?
- •Определение количества градаций цвета?
- •Формула цвета для двух компонент в зависимости от размера ячейки?
- •Линиатура растра?
- •Реализация дизеринга в графической системе?
- •Диагональные растры?
- •Частотная модуляция?
- •Записать в общем виде выражение аффинного преобразование координат?
- •Какие преобразования включают аффинные?
- •Записать в общем виде выражение для поворота угла ?
- •Записать в матричном виде аффинные преобразования?
- •Что такое однородные координаты?
- •Показать вид матрицы вращения в однородных координатах?
- •Показать вид матрицы растяжения-сжатия и отражения вокруг оси Оу в однородных координатах?
- •Показать вид матрицы переноса в однородных координатах?
- •Выписать в матричном виде преобразование для поворота вокруг произвольной точки на угол и указать, что означает каждая из матриц?
- •Выписать вид матриц для вращения в пространстве?
- •Указать, в чем состоит смысл проектирования?
- •Какая проекция называется ортографической?
- •Какая проекция называется аксонометрической?
- •Какая проекция называется изометрической?
- •Какая проекция называется косоугольной?
- •Какая проекция называется кабинетной?
- •Выписать матрицы проектирования вдоль координатных осей?
- •Какую информацию нужно задать для проективного преобразования пространственного объекта?
- •Привести вид матрицы проектирования для косоугольной проекции?
- •Выписать вид матрицы проектирования в однородных координатах и докажите, что она осуществляет проектирование в двумерные координаты?
- •Понятие соседей и связности?
- •Принцип работы четырехсвязного алгоритма Брезенхэма?
- •Принцип работы восьмисвязного алгоритма Брезенхэма?
- •Пример восьмисьмисвязного алгоритма?
- •Построение окружности?
- •Построение эллипса?
- •Р ис.6.4.Четверть эллипса с касательной и нормалью
- •Кривая Безье?
- •Геометрический алгоритм?
- •Задача вывода фигур?
- •Простейший алгоритм закрашивания?
- •Волновой алгоритм закрашивания?
- •Алгоритм закрашивания линиями?
- •Заполнение прямоугольника и круга?
- •Заполнение полигонов?
- •Учет вершин полигона?
- •Ускорение работы алгоритма?
- •Аналитическая модель описания поверхности?
- •Аппроксимация сплайна?
- •Кубический сплайн?
- •Векторная полигональная модель?
- •Первый способ описания структур данных в векторной модели?
- •Второй и третий способы описания структур данных в векторной модели?
- •Достоинства и недостатки векторной модели?
- •Воксельная модель?
- •Отражение света?
- •Закон Снеллиуса?
- •Диффузное преломление и отражение?
- •Распределение энергии при отражении?
- •Распределение энергии при преломлении?
- •Описание поверхности, состоящей из случайно ориентированных микрограней?
- •Преломление света поверхностью, состоящей из микрозеркал?
- •Моделирование общего случая освещенности?
- •Задача удаления невидимых линий и поверхностей?
- •Общие характеристики методов удаления невидимых линий и поверхностей?
- •Типы когерентности?
- •Линии горизонта?
- •Методы плавающего горизонта?
- •Сортировка граней по глубине?
- •Метод z-буфера?
- •Эвристические концепции невидимости?
- •Отличие и сходство видимости в сценах для выпуклых и невыпуклых фигур?
- •Постановка задачи удаления невидимых граней выпуклого многогранника?
- •Алгоритм удаления невидимых граней выпуклого многогранника?
- •Количественная невидимость?
- •Общие свойства функции количественной невидимости?
- •Свойство функции количественной невидимости в особых точках?
Учет вершин полигона?
При нахождении точек пересечения горизонтали с контуром необходимом принимать во внимание особые точки. Если горизонталь имеет координату у, совпадающую с уi вершины Рi, тогда надлежит анализировать то, как горизонталь проходит через вершину. Если горизонталь при этом пересекает контур, как, например, в вершинах P0 или Р4, то в массив записывается одна точка сечения. Если горизонталь касается вершины контура (в этом случае вершина соответствует локальному минимуму или максимуму как, например в вершинах P1, P2, P3 или P5), тогда координата точки касания или не записывается, или записывается в массив два раза. Это - условие четности количества точек пересечения, хранящихся в массиве X.
Процедура определения точек пересечения контура с горизонтальной разверткой, учитывая анализ на локальный максимум, может быть достаточно сложной. Это замедляет работу. Радикальным решением для упрощения поиска точек сечения может быть смещение координат вершин контура или горизонталей заполнения таким образом, чтобы ни одна горизонталь не попала в вершину. Смещение можно выполнять различными способами, например, ввести в растр дробные координаты для горизонталей: ymin + 1.5, …, ymax - 0.5. Отметим, что однако такое упрощение процедуры нахождения точек пересечения приводит к искажению формы полигона.
Для определения координат х точек пересечения для каждой горизонтали необходимо перебирать все п отрезков контура. Координата пересечения отрезка
рi – pk с горизонталью у равна
.
Количество тактов работы этого алгоритма определяется как:
где ymin , ymax – диапазон координат у, Nгop – число тактов, необходимых для одной горизонтали. Если оценить величину Nгop как пропорциональную числу вершин, то
Nгop: k•п,
где k – коэффициент пропорциональности, п – число вершин полигона.
Ускорение работы алгоритма?
Возможны модификации приведенного алгоритма для ускорения его работы. Например, можно принять во внимание то, что каждая горизонталь в большинстве случаев пересекает небольшое количество ребер контура. Поэтому если при поиске точек сечения делать предварительный отбор ребер, которые находятся вокруг каждой горизонтали, то можно добиться уменьшения количества тактов работы с Nгop: k•п до k nр, где nр – число отобранных ребер. Например, разделим диапазон (ymin - ymax) пополам. Если для диапазона от (ymin - yср) составить список отрезков (или вершин), которые попадают в этот диапазон, то в этот список будет включено приблизительно вдвое меньшее количество, чем для исходного диапазона. Приблизительность в данном случае ибо это зависит от формы полигона.
Аналогично для диапазона (уср – утах) также можно составить список ребер, который также будет почти вдвое меньшим. Теперь общее число тактов будет
где Nдоп – количество тактов для создания списка ребер.
Такой способ повышения быстродействия эффективен для большого количества вершин. Контур можно делить не пополам, а на более мелкие части – соответственно повышается скорость.
Приведенные выше алгоритмы заполнения могут быть использованы не только для рисования фигур. На основе алгоритмов заполнения могут быть разработаны алгоритмы для других целей, как например, для определения площади фигуры, если считать площадь пропорциональной количеству пикселов заполнения, или для поиска объектов по внутренней точке – эта операция часто используется в векторных графических редакторах. I