
- •Вопрос 1 «Предмет и задача химии. Значение химии»
- •Вопрос 2. Строение атома. Модели атома (Морозова, Резерфорда, Бора). Теория Бора. Уравнение Планка. Принцип неопределенности Гейзенберга. Волновая функция.
- •Вопрос 3. Квантово-механическое представление о строении атома. Квантовые числа и их физический смысл.
- •Вопрос 4. Распределение электронов в многоэлектронном атоме. Принцип Паули. Правило Гунда. Порядок заполнения электронных подуровней.
- •Вопрос 6. Ковалентная связь. Свойства ковалентной связи: прочность, полярность, насыщаемость, направленность, гибридизация, кратность.
- •Вопрос 7. Обменный и донорно-акцепторный механизм образования ковалентной связи.
- •Вопрос 8. Σ-, π-, δ- связь.
- •Вопрос 9.Методы молекулярных орбиталей (ммо) и валентных связей(мвс). Сравнительная характеристика ммо и мвс.
- •Вопрос 10. Ионная связь и ее свойства.
- •Вопрос 11. Водородная связь и межмолекулярное взаимодействие.
- •Вопрос 12. Комплексные соединения: строение, характер связи, диссоциация. Классификация комплексных соединений.
- •Вопрос 13. Химичёская термодинамика, термодинамические параметры (т, р, V). Внутренняя энергия. Первый закон термодинамики.
- •Вопрос 14. Энтальпия образования вещества. Закон Гесса и его применение.
- •Вопрос 16. Свободная энергия Гиббса. Самопроизвольность протекания реакций.
- •Вопрос 17. Химическая кинетика. Закон действующих масс гомогенных и гетерогенных систем. Скорость прямой и обратной реакции. Константа скорости химической реакции. Порядок и молекулярность реакции.
- •Вопрос 18. Влиятние температуры на скорость химической реакции. Правило Вант-Гоффа. Энергия активации. Уравнение Аррениуса.
- •Вопрос19. Гомогенный и гетерогенный катализ. Катализаторы и ингибиторы
- •Вопрос 20.Химическое равновесие. Смещение хим.Равновесия при изменении условий протекания хим.Процессов. Принцип Ле-Шателье.
- •Вопрос 21. Растворы. Свойства растворов
- •Вопрос 22. Способы выражения концентраций растворов
- •Вопрос 23. Законы растворов???Закон Вант-Гоффа.Закон Генри
- •Вопрос 24. Закон Рауля. Осмос. Физический смысл эбуллиоскопической и криоскопической постоянной.
- •Вопрос 25. Растворы электролитов. Электролитическая диссоциация. Степень диссоциации. Константа диссоциации.
- •Вопрос 26. Сильные электролиты(примеры). Активность ионов в растворах сильных электролитов. Коэффициент активности. Ионная сила.
- •Вопрос 27 Ионное произведение воды. Водородный показатель (рН) растворов.
- •Вопрос 28. Равновесие осадок-раствор. Произведение растворимости. Условия растворения и выпадения осадка.
- •Вопрос 29.Гидролиз солей. Константа гидролиза. Степень гидролиза.
- •Вопрос 30. Дисперсные системы. Коллоидные растворы, свойства.
- •Вопрос 31. Строение мицеллы коллоидов. Оптические и электрические свойства коллоидных растворов.
- •Вопрос 32. Овр. Ионно-электронный метод уравнивания овр. Термодинамическая вероятность протекания овр.
- •Вопрос 33. Электродный потенциал. Старндартный электродный понетциал.Водородный потенциал.Уравнение Нернста.
- •Вопрос 34. Гальванический элемент: устройства, протекающие процессы на аноде и катоде. Эдс и энергия Гиббса гальванического элемента
- •Вопрос 35. Электролиз. Законы Фарадея. Электрохимический эквивалент. Выход по току.
- •Вопрос 36. Электролиз расплавов и растворов на растворимых и нерастворимых электродах. Последовательность разряда ионов при электролизе на аноде и катоде.
- •Вопрос 37. Поляризация, ее причины. Перенапряжение.
Вопрос 14. Энтальпия образования вещества. Закон Гесса и его применение.
Стандартная энтальпия образования вещества- это тепловой эффект образования одного моля сложного вещества из простых веществ устойчивых при стандартных условиях и данной температуре.
Закон Гесса. В 1841 году российский ученый Г.И.Гесс открыл закон, получивший его имя. Тепловой эффект химической реакции зависит только от начального и конечного состояний системы и не зависит от пути протекания процесса. Как следствие из этого закона: тепловой эффект химической реакции равен сумме тепловых эффектов образования продуктов за вычетом суммы тепловых эффектов образования исходных веществ с учетом их стехиометрических коэффициентов.
Так как энтальпия зависит от состояния системы, но не зависит от пути процесса, то, если при проведении процесса система вернулась в исходное состояние, суммарное изменение энтропии системы равно нулю (dH = 0). Процессы, в которых система после последовательных превращений возвращается в исходное состояние, называются круговыми процессами или циклами. Метод циклов широко используется в термодинамических расчетах. Закон Гесса показывает, что каким бы путем не протекала реакция, ее тепловой эффект будет одинаков, если при этом не меняется конечное и исходное состояния системы.
Тепловой эффект определяется калориметрическим методом: Q= (c1m1 + c2m2 +….)∆T.
Реакции бывают эндотермические (∆Н > 0), т.е. реакции протекающие с поглощением тепла. Экзотермические реакции (∆H < 0) протекают с выделением тепла.
Вопрос 15. Энтропия как мера термодинамической необратимости процесса. Второй закон термодинамики. Мерой неупорядоченности состояния системы служит термодинамическая функция, получившая название энтропии.
Состояние системы можно характеризовать микросостояниями составляющих ее частиц, т.е. их мгновенными координатами и скоростями различных видов движения в различных направлениях. Число микросостояний системы называется термодинамической вероятностью системы W. Так как число частиц в системе огромно , то термодинамическая вероятность системы выражается огромными числами. Поэтому пользуются логарифмом термодинамической вероятности In W. Величина, равная RlnW = S, называется энтропией системы. отнесенной к одному молю вещества. Как и молярная постоянная R, энтропия имеет единицу измерения Дж/(моль-К). Энтропия вещества в стандартном состоянии называется стандартной энтропией S0.
S<0 несамопроизвольна
S>0 самопроизвольна
S=0 равновесие
В отличие от других термодиамических функций, можно определить не только изменение, но и абсолютное значение энтропии. Это вытекает из высказанного в 1911г. М. Планком постулата, согласно которому "при абсолютном нуле энтропия идеального кристалла равна нулю". Этот постулат получил название третьего закона термодинамики. По мере повышения температуры растет скорость различных видов движений частиц, т.е. число микросостояний и соответственно термодинамическая вероятность и энтропия вещества . При переходе вещества из твердого состояния в жидкое значительно увеличивается энтропия(∆Sпл). особенно резко растет энтропия при переходе вещества из жидкого состояния в газообразное(∆Sкип). Также энтропия увеличивается при переходе вещества из кристаллического состояния в аморфное. Изменение энтропии системы в результате х.р. (∆S) (энтропия реакции) равно сумме энтропий продуктов реакций за вычетом энтропий исходных веществ с учетом их стехиометрических коэффициентов..
Второй закон термодинамики имеет несколько формулировок. Для систем, которые не обмениваются с окружающей средой ни энергией, ни веществом (изолированные системы), второй закон термодинамики имеет следующую формулировку: в изолированных системах самопроизвольно идут только такие процессы, которые сопровождаются возрастанием энтропии:. ∆S> 0.
Второй закон термодинамики имеет статистический характер, т.е. справедлив лишь для систем, состоящих из очень большого числа частиц.
Системы, в которых протекают химические реакции, не бывают изолированными, так как они сопровождаются изменением внутренней энергии системы (тепловым эффектом реакции), т.е. система обменивается энергией с окружающей средой. Химические реакции могут протекать самопроизвольно и без возрастания энтропии, но при этом увеличивается энтропия окружающей среды.
Однако, если в системе протекает химическая реакция, то система обменивается энергией с окружающей средой, т.е. не является изолированной. Химические реакции обычно сопровождаются изменением Как энтропии, так и энтальпии.