
- •Вопрос 1 «Предмет и задача химии. Значение химии»
- •Вопрос 2. Строение атома. Модели атома (Морозова, Резерфорда, Бора). Теория Бора. Уравнение Планка. Принцип неопределенности Гейзенберга. Волновая функция.
- •Вопрос 3. Квантово-механическое представление о строении атома. Квантовые числа и их физический смысл.
- •Вопрос 4. Распределение электронов в многоэлектронном атоме. Принцип Паули. Правило Гунда. Порядок заполнения электронных подуровней.
- •Вопрос 6. Ковалентная связь. Свойства ковалентной связи: прочность, полярность, насыщаемость, направленность, гибридизация, кратность.
- •Вопрос 7. Обменный и донорно-акцепторный механизм образования ковалентной связи.
- •Вопрос 8. Σ-, π-, δ- связь.
- •Вопрос 9.Методы молекулярных орбиталей (ммо) и валентных связей(мвс). Сравнительная характеристика ммо и мвс.
- •Вопрос 10. Ионная связь и ее свойства.
- •Вопрос 11. Водородная связь и межмолекулярное взаимодействие.
- •Вопрос 12. Комплексные соединения: строение, характер связи, диссоциация. Классификация комплексных соединений.
- •Вопрос 13. Химичёская термодинамика, термодинамические параметры (т, р, V). Внутренняя энергия. Первый закон термодинамики.
- •Вопрос 14. Энтальпия образования вещества. Закон Гесса и его применение.
- •Вопрос 16. Свободная энергия Гиббса. Самопроизвольность протекания реакций.
- •Вопрос 17. Химическая кинетика. Закон действующих масс гомогенных и гетерогенных систем. Скорость прямой и обратной реакции. Константа скорости химической реакции. Порядок и молекулярность реакции.
- •Вопрос 18. Влиятние температуры на скорость химической реакции. Правило Вант-Гоффа. Энергия активации. Уравнение Аррениуса.
- •Вопрос19. Гомогенный и гетерогенный катализ. Катализаторы и ингибиторы
- •Вопрос 20.Химическое равновесие. Смещение хим.Равновесия при изменении условий протекания хим.Процессов. Принцип Ле-Шателье.
- •Вопрос 21. Растворы. Свойства растворов
- •Вопрос 22. Способы выражения концентраций растворов
- •Вопрос 23. Законы растворов???Закон Вант-Гоффа.Закон Генри
- •Вопрос 24. Закон Рауля. Осмос. Физический смысл эбуллиоскопической и криоскопической постоянной.
- •Вопрос 25. Растворы электролитов. Электролитическая диссоциация. Степень диссоциации. Константа диссоциации.
- •Вопрос 26. Сильные электролиты(примеры). Активность ионов в растворах сильных электролитов. Коэффициент активности. Ионная сила.
- •Вопрос 27 Ионное произведение воды. Водородный показатель (рН) растворов.
- •Вопрос 28. Равновесие осадок-раствор. Произведение растворимости. Условия растворения и выпадения осадка.
- •Вопрос 29.Гидролиз солей. Константа гидролиза. Степень гидролиза.
- •Вопрос 30. Дисперсные системы. Коллоидные растворы, свойства.
- •Вопрос 31. Строение мицеллы коллоидов. Оптические и электрические свойства коллоидных растворов.
- •Вопрос 32. Овр. Ионно-электронный метод уравнивания овр. Термодинамическая вероятность протекания овр.
- •Вопрос 33. Электродный потенциал. Старндартный электродный понетциал.Водородный потенциал.Уравнение Нернста.
- •Вопрос 34. Гальванический элемент: устройства, протекающие процессы на аноде и катоде. Эдс и энергия Гиббса гальванического элемента
- •Вопрос 35. Электролиз. Законы Фарадея. Электрохимический эквивалент. Выход по току.
- •Вопрос 36. Электролиз расплавов и растворов на растворимых и нерастворимых электродах. Последовательность разряда ионов при электролизе на аноде и катоде.
- •Вопрос 37. Поляризация, ее причины. Перенапряжение.
Вопрос 1 «Предмет и задача химии. Значение химии»
Химия — наука о строении, свойствах веществ, их превращениях и сопровождающих явлениях. Три главные задачи: 1)исследование строения вещества, развитие теории строения и свойств молекул и материалов. Важно установление связи между строением и разнообразными свойствами веществ и на этой основе построение теорий реакционной способности вещества, кинетики и механизма химических реакций и каталитических явлений. 2)осуществление направленного синтеза новых веществ с заданными свойствами. Здесь также важно найти новые реакции и катализаторы для более эффективного осуществления синтеза уже известных и имеющих промышленное значение соединений. 3)анализ. Эта традиционная задача химии приобрела особое значение. Оно связано как с увеличением числа химических объектов и изучаемых свойств, так и с необходимостью определения и уменьшения последствий воздействия человека на природу.
Различают неорганическую, органическую и элементоорганическую химии. Объектом неорганической химии являются все химические элементы и их соединения, другие вещества на их основе. Органическая химия изучает свойства обширного класса соединений, образованных посредством химических связей углерода с углеродом и другими органогенными элементами: водородом, азотом, кислородом, серой, хлором, бромом и йодом. Элементоорганическая химия находится на стыке неорганической и органической химии. Эта «третья» химия относится к соединениям, включающим химические связи углерода с остальными элементами периодической системы, не являющимися органогенами.
Химия является общетеоретической дисциплиной. Она призвана дать современное научное представление о веществе как одном из видов движущейся материи, о путях, механизмах и способах превращения одних веществ в другие. Знание основных химических законов, владение техникой химических расчетов, понимание возможностей, предоставляемых химией с помощью других специалистов, работающих в отдельных и узких ее областях, значительно ускоряют получение нужного результата в различных сферах инженерной и научной деятельности.
Химическая отрасль — одна из важнейших отраслей промышленности в нашей стране. Производимые ею химические соединения, различные композиции и материалы применяются повсюду: в машиностроении, металлургии, сельском хозяйстве, строительстве, электротехнической и электронной промышленности, связи, транспорте, космической технике, медицине, быту, и др. Главными направлениями развития современной химической промышленности являются: производство новых соединений и материалов и повышение эффективности существующих производств.
Вопрос 2. Строение атома. Модели атома (Морозова, Резерфорда, Бора). Теория Бора. Уравнение Планка. Принцип неопределенности Гейзенберга. Волновая функция.
Все вещества состоят из атомов.. Атом — система взаимодействующих элементарных частиц, состоящая из ядра и электронов. Тип атома определяется составом его ядра. Ядро состоит из протонов и нейтронов, вместе называемых нуклонами..
При химическом взаимодействии атомов образуются молекулы. Молекулы бывают одноатомные (молекулы гелия Не), двухатомные (азота N2), многоатомные (воды Н2О,) и полимерные (содержащие до сотен тысяч и более атомов — молекулы металлов в компактном состоянии, белков, кварца).
Модель атома.
Первая модель М.П. Морозова была разработана в 1860 г. – атом некий кристалл в узлах находятся электроны, в середине сосредоточен «+» заряд.
Э. Резерфорд в 1914 году выдвинул новую модель атома. Согласно этой модели:атом-сфера с положит.ядром. вокруг ядра вращаются электроны. Поэтому данную модель наз-ют планетарной. Модель сущ-ет по сей день.
Н. Бор исходил из планетарной модели атома. Атом-сфера с положит.ядром,вокруг которого по стационарным орбитам вращаются электроны.
Постулаты Бора:
Движение ℮ ограничено индивид.устойчив.орбитой: ℮ вращается по стационарной орбите, при этом ℮ не поглощает и не выделает энергию.
При переходе ℮ с дальней орбиты на нижнюю энергия выделяется,а при переходе с нижней орбиты на верхнюю поглощается.
Энергия выделается порциями(квантами), которую можно рассчитать по ур-ю Планка.
Уравнение Планка: E=hν
Принцип неопределенности Гейзенберга. Невозможно в любой момент времени определить и положение ℮ в пространстве и импульс, т.е. скорость движения ℮. Движение ℮ носит волновой характер.
∆р*∆х≥h/2π ,где ∆р – неопределенная величина импульса, ∆х – неопределенное положение частицы в пространстве.
Для описания свойств электрона используют волновую функцию, которую обозначают буквой ψ (пси). Квадрат ее модуля |ψ|2 имеет физический смысл, а сама волновая функция его не имеет. Величину |ψ|2 называют амплитудой вероятности.