
- •Представление о современной квантово-механической модели атома. Характеристика состояния электронов в атоме с помощью набора квантовых чисел. Электронные формы химических элементов.
- •Последовательность заполнения энергетических уровней и подуровней электронами в многоэлектронных атомах. Принцип Паули. Правило Гунда. Принцип минимума энергии.
- •Энергия ионизации и энергия сродства к электрону. Характер их изменения по периодам и группам периодической системы д.И.Менделеева. Металлы и неметаллы.
- •Электроотрицательность химических элементов. Характер изменения электроотрицательности по периодам и группам периодической системы д.И.Менделеева. Понятие степени окисления.
- •Основные типы химической связи. Ковалентная связь. Основные положения метода валентных связей. Сигма- и Пи- ковалентные связи.
- •Два механизма образования ковалентной связи: обычный и донорно-акцепторный.
- •Геометрическая форма и полярность молекул.
- •Ионная связь как предельный случай поляризации ковалентной связи. Электростатическое взаимодействие ионов.
- •Химические свойства основных,кислотных и амфотерных оксидов.
- •Основания. Химические свойства оснований. Амфотерные состояния,реакции их взаимодействия с кислотами и щелочами.
- •Характерные реакции
- •Кислоты. Бескислородные и кислородные кислоты. Свойства кислот (серная,соляная,азотная).
- •Основные понятия химической кинетики. Скорость химической реакции. Факторы,влияющие на скорость реакции в гомогенных и гетерогенных процессах. Катализ.
- •Влияние концентрации на скорость химической реакции. Закон действующих масс.
- •Влияние температуры на скорость химической реакции. Энергия активации.
- •Химическое равновесие. Константа равновесия,её зависимость от температуры. Возможность смещения равновесия химической реакции. Принцип Ле-Шателье.
- •Реакции без участия и с участием электронов. Ионно-обменные и окислительно-восстановительные реакции.
- •Изображение реакций ионного обмена
- •Правила написания реакций ионного обмена
- •Описание
- •Окисление
- •Восстановление
- •Окислительно-восстановительная пара
- •Виды окислительно-восстановительных реакций
- •Примеры Окислительно-восстановительная реакция между водородом и фтором
- •Окисление, восстановление
- •Взаимодействие с металлами:
- •Взаимодействие с другими неметаллами:
- •Способы выражения количественного состава раствора: массовая,молярная и нормальная концентрация, модальность. Массовая доля
- •Объёмная доля
- •Молярность (молярная объёмная концентрация)
- •Нормальная концентрация (мольная концентрация эквивалента, или просто «нормальность»)
- •Мольная (молярная) доля
- •Моляльность (молярная весовая концентрация, моляльная концентрация)
- •Титр раствора
- •Растворимость. Равновесие в гетерогенных системах. Произведение растворимости малорастворимых неорганических веществ.
- •Водные растворы электролитов. Сильные и слабые электролиты. Константа и степень диссоциации. Закон разбавления Оствальда.
- •Электролитическая диссоциация воды. Константа диссоциации воды. Ионное произведение воды.
- •Водородный показатель pH среды для растворов электролитов. Шкала pH. Формулы для расчёта pHдля сильных и слабых кислот и оснований.
- •Диссоциация сильных электролитов. Активность ионов в растворах. Коэффициент активности. Представление об ионной силе растворов.
- •Гидролиз солей. Факторы, влияющие на процесс гидролиза. Расчёты pHгидролиза солей по катиону и аниону.
- •Степень гидролиза
- •Электродный потенциал. Возникновение скачка потенциала на межфазной границе. Водородный электрод. Стандартный водородный электрод.
- •Электродные системы,их классификация. Ox- и Red-определяющие частицы в электродных системах разного типа.
- •Уравнение Нернста для расчёта электродных потенциалов электродных систем различных типов. Газовые водородный и кислородный электроды. Редокси-электроды.
- •Электрохимический потенциал как показатель ox-red свойств веществ. Определение вероятности протекания овр по разности потенциалов реагирующих веществ.
- •Понятие о гальваническом элементе. Катодные и анодные процессы в гальваническом элементе. Эдс гальванического элемента. Схемы гальванических элементов.
- •Электрохимическая коррозия металлов в различных средах.
- •Химическое взаимодействие металлов с растворами обычных кислот и кислот окислителей.
- •Процесс электролиза. Катодные и анодные процессы. Порядок разряда частиц на аноде и катоде в зависимости от значения их электродного потенциала.
- •Роль воды в анодном и катодном процессах. Электролиз с инертным растворяющимся анодом.
- •Расчёты масс веществ-продуктов электролиза по закону Фарадея.
- •Математический вид
- •Классификация анионов и групповые реагенты
- •Классификация анионов
- •Связь сульфидной классификации катионов с электронной конфигурацией атомов и ионов
- •Методы количественного анализа-гравиметрический и титриметрический (объёмный).
- •Виды титриметрического анализа
- •Типы титрования
- •Виды титриметрического анализа
- •Особенности строения атома углерода. Неорганические соединения углерода (оксиды,карбонаты и гидрокарбонаты,карбиды) и их свойства.
Электродный потенциал. Возникновение скачка потенциала на межфазной границе. Водородный электрод. Стандартный водородный электрод.
Электро́дный потенциа́л — разность электрических потенциалов между электродом и находящимся с ним в контакте электролитом (чаще всего между металлом и раствором электролита).
Возникновение электродного потенциала обусловлено переносом заряженных частиц через границу раздела фаз, специфической адсорбцией ионов, а при наличии полярных молекул (в том числе молекул растворителя) — ориентационной адсорбцией их. Величина электродного потенциала в неравновесном состоянии зависит как от природы и состава контактирующих фаз, так и от кинетических закономерностей электродных реакций на границе раздела фаз.
Равновесное значение скачка потенциалов на границе раздела электрод/раствор определяется исключительно особенностями электродной реакции и не зависит от природы электрода и адсорбции на нём поверхностно-активных веществ. Эту абсолютную разность потенциалов между точками, находящимися в двух разных фазах, нельзя измерить экспериментально или рассчитать теоретически.
МЕЖФАЗНЫЕ СКАЧКИ ПОТЕНЦИАЛА, разности элект-рич. потенциалов на границе раздела фаз электрод - электролит, обусловленные пространств. разделением зарядов и определяемые работой переноса через эту границу единичного воображаемого заряда. При переносе из бесконечно удаленной точки С, расположенной в вакууме, в точку А, находящуюся внутри нек-рой фазы а (напр., металла или р-ра электролита), Межфазные скачки потенциала наз. внутренним потенциалом фазы а и обозначается ja (рис. 1). Он обусловлен своб. электростатич. зарядом самой фазы а, к-рый создает скачок потенциала Ya, наз. внешним потенциалом фазы, и пространств. разделением связанных зарядов на границе вакуума и фазы а, в результате к-рого возникает п о в е р х н о с т н ы й п о т е н ц и а л Хa. Следовательно, ja = Ya + Хa.
Потенциал
Ya
определяется работой переноса единичного
воображаемого заряда из бесконечно
удаленной точки С в вакууме
в точку А', к-рая находится также в
вакууме,
но вблизи фазы а. Так, если фаза a-сфера
радиуса R и несет своб. заряд Q, по законам
электростатики Ya
= Q/4pe0R,
где e0
= 8,854.10-12
Ф/м-электрич. постоянная (диэлектрич.
проницаемость вакуума).
Точка А' выбирается на таком малом
расстоянии х от пов-сти фазы a, чтобы
Q/4pe0
(R + х)
Q/4pe0R,
т. е. х << R. С др. стороны, х должно быть
достаточно велико для того, чтобы можно
было пренебречь взаимод. единичного
заряда с индуцированным им зарядом
внутри фазы а по сравнению с кулоновским
взаимод. единичного заряда со своб.
зарядом Q. Это условие выполняется при
значениях х от 10-7
до 10-5
м (обычно полагают x
10-6м).
Потенциал Хa определяется работой переноса единичного воображаемого заряда из точки А' в точку А внутри фазы a. Если a-металл, Хa возникает потому, что электронный газ выходит за пределы кристаллич. решетки металла и таким образом создается пространств. разделение зарядов; при этом Хa > 0. Если же a- р-р электролита, механизм возникновения Хa полагают следующим. Поскольку силы, действующие на первый слой молекул р-рителя со стороны вакуума (или воздуха) и со стороны р-ра, существенно различны, распределение частиц р-рителя вблизи пов-сти р-ра отличается от их хаотич. распределения в объеме р-ра. На пов-сти всегда возникает нек-рая предпочтит. ориентация молекул р-рителя и, если они полярны, т.е. обладают дипольным моментом, их ориентация может привести к пространств. разделению зарядов и возникновению разности потенциалов. С др. стороны, этот же эффект м. б. следствием неодинаковой сольватации анионов и катионов в р-ре и разл. расстоянием их центров заряда до границы раздела фаз в поверхностном слое р-ра.
Если
фазы а и р контактируют, а точки В и В'
находятся соотв. внутри фазы b и в вакууме
на расстоянии х
10 -6
м от ее пов-сти (рис. 1), то кроме описанных
потенциалов фазы b (jb,
Yb
и Хb)
возникает также разность потенциалов
между точками А и В, наз. гальвани-потенциалом
(обозначается Dabj),
и точками А' и В', наз. вольта-потенциалом
(DabY).
Гальвани-потенциал
определяется работой переноса единичного
воображаемого заряда из точки А в точку
В, вольта-потенциал-из А' в В'. Поскольку
работа переноса заряда не зависит от
пути переноса, галь-вани- и вольта-потенциалы
можно записать как разность соответствующих
внутренних или внешних потенциалов:
Dabj
= jb
- ja;
DabY
= Yb
- Ya.
Кроме того, как видно из рис. 1, DabY
= Хa
+ Dabj
- Хb.
Поскольку в любом эксперименте по переносу зарядов через границу раздела фаз участвуют не единичные воображаемые заряды, а реальные заряженные частицы (электроны, ионы), всегда измеряется работа переноса этих частиц, определяемая разностью их электрохим. потенциалов в обеих фазах. По определению, электрохимический потенциал частицы i в фазе a mia = mia + ziFja, где mia-хим. потенциал этой частицы в фазе a, z,-ee зарядовое число, F- постоянная Фарадея. Работа переноса 1 моля частиц i из a в b равна: mib — mia = (mib — mia) + ziF (jb — ja). Опытным путем разделить эту величину на две составляющие - химическую (mib — mia)и электрическую ziF (jb — ja) - невозможно. Отсюда следует, что электрич. разность потенциалов между двумя точками м. б. измерена лишь при условии, что эти точки расположены в одинаковых по составу фазах, когда mib — mia = 0. Поэтому внутренние и поверхностные потенциалы, а также гальвани-потенциалы на границе двух фаз различного состава не м. б. измерены; внешние потенциалы и вольта-потенциалы доступны экспериментальному определению.
В обычных электрохим. экспериментах с помощью вольтметра или потенциометра всегда определяют разность потенциалов на концах правильно разомкнутой цепи, т. е. такой цепи, к-рая заканчивается проводниками из одного и того же металла. Обычно это достигается простым подключением к электродам Ml и М2 медных проводов (рис. 2, а). Такая цепь имеет четыре гальвани-потенциала: DM1Cuj, Dp-pM1j, DM2p-pj и DCuM2j. Можно, однако, показать, что эта цепь эквивалентна цепи, изображенной на рис. 2, в и содержащей только три гальвани-потенциала: DM1M2j, Dp-pM1j и DM2p-pj. Действительно, включение между медным проводом и металлом Ml проводника из металла М2 (рис. 2,6)не изменяет разности потенциалов на концах цепи. Поэтому цепи на рис. 2, а и 2,б эквивалентны. Но цепь на рис. 2,б одновременно эквивалентна и цепи на рис. 2, в, т. к. отличается от нее двумя гальвани-потенциалами DM2Cuj, к-рые в точности компенсируют друг друга. Следовательно, эквивалентны и цепи, изображенные на рис. 2, а и 2, в.
Хотя абс. значения Хa и Dbaj нельзя измерить, можно определить на опыте их изменения. Так, если в системе (рис. 2,а)электрич. состояние металла Ml оставить без изменения, а М2 изменить поляризацией от внеш. источника путем погружения в р-р третьего вспомогат. электрода, то изменение разности потенциалов между двумя первыми электродами будет равно изменению гальвани-потенциала DM2p-pj.
Поверхностные потенциалы следует отличать от доступной измерению работы выхода Wai частицы i, т.е. работы переноса ее из фазы а в точку А', расположенную в вакууме на расстоянии х от границы раздела фаз. Для 1 моля частиц Wai = — mai — ziFXa. Если объемный состав фазы а не изменяется и, следовательно, mai = const, а поверхностный потенциал этой фазы изменяется, напр., вследствие адсорбции к.-л. в-ва, то изменение Хa однозначно связано с изменением Wai ф-лой dХa = — dWai/ziF. Эта ф-ла лежит в основе эксперим. определения dХa.
Для оценки абс. значения Xa пользуются модельными расчетами. При этом задаются моделью границы фазы а с вакуумом и по распределению заряженных частиц на этой границе рассчитывают Хa (или задаются моделью объема фазы а, рассчитывают на ее основе mai) и с помощью найденного экспериментально значения Wai рассчитывают Хa по ф-ле Хa = - (mai+ Wai)/ziF. Если оба из указанных способов дают согласующиеся значения, оценку можно считать достаточно надежной.
Для модельного расчета гальвани-потенциала используют ф-лу: Dbaj = DbaY + Хb — Хa, в к-рую подставляют найденный экспериментально вольта-потенциал и значения Хb и Хa, полученные на основе модельных расчетов.
Водородный электрод представляет собой сосуд с укреплённой пластинкой из платины, которая погружена в раствор кислоты, содержащий ионы водорода. Сама платиновая пластинка покрыта слоем платиновой черни в тонкодисперсном состоянии, наносимой электролитически. Обычно используется раствор соляной или серной кислоты. Таким способом определяется стандартный электродный потенциал электрохимической реакции, определяемый формулой 2Н+ + 2e− = H2. Необходимо, чтобы водород был максимально чистым для точности показаний эксперимента, так же должны соблюдаться и другие показатели, как, например, давление водорода (должно быть рH2 = 1 атм (101,3 кПа)) и активность ионов. Конструкция водородного электрода довольно сложна и неудобна в частом применении, поэтому используются и другие электроды.
Стандартный водоро́дный электро́д — электрод, использующийся в качестве электрода сравнения при различных электрохимических измерениях и в гальванических элементах. Водородный электрод (ВЭ) представляет собой пластинку или проволоку из металла, хорошо поглощающего газообразный водород (обычно используют платину или палладий), насыщенную водородом (при атмосферном давлении) и погруженную в водный раствор, содержащий ионы водорода. Потенциал пластины зависит[уточнить] от концентрации ионов Н+ в растворе. Электрод является эталоном, относительно которого ведется отсчет электродного потенциала определяемой химической реакции. При давлении водорода 1 атм., концентрации протонов в растворе 1 моль/л и температуре 298 К потенциал ВЭ принимают равным 0 В. При сборке гальванического элемента из ВЭ и определяемого электрода, на поверхности платины обратимо протекает реакция:
2Н+ + 2e− = H2
то есть, происходит либо восстановление водорода, либо его окисление — это зависит от потенциала реакции, протекающей на определяемом электроде. Измеряя ЭДС гальванического электрода при стандартных условиях (см. выше) определяют стандартный электродный потенциал определяемой химической реакции.
ВЭ применяют для измерения стандартного электродного потенциала электрохимической реакции, для измерения концентрации (активности) водородных ионов, а также любых других ионов. Применяют ВЭ так же для определения произведения растворимости, для определения констант скорости некоторых электрохимических реакций.