
- •1) Закона Ома участка цепи.
- •2) Расчёт цепей методом законов Киргофа.
- •3) Определение соединения сопротивлений треугольником
- •Определение соединения сопротивлений звездой
- •Причина преобразования треугольника в звезду
- •Формулы для расчета преобразования треугольника в звезду
- •Основные величины, характеризующие синусоидальные колебания
- •1.2 Действующие и средние значения синусоидальных величин
- •6) Цепь синусоидального тока с идеальной индуктивностью
- •7 ) Емкость в цепи синусоидального напряжения
- •8) Резонанс токов
- •15) Режимы работы мпт
- •16) Способы регулирования скорости асинхронного двигателя.
- •17)Конструкция и принцип действия трехфазной асс-й машины.
- •19) Механические характеристики асинхронного двигателя.
- •20) Регулироание скорости вращения ас-го двигателя
- •21) Выключатели и рубильники.
- •30) Основы электробезопасности.
- •Технические мероприятия по предупреждению электротравматизма
- •Организационные мероприятия по электробезопасности
7 ) Емкость в цепи синусоидального напряжения
Если к конденсатору емкостью C подключить синусоидальное напряжение, то в цепи протекает синусоидальный ток
Из
анализа выражений 6.13 следует, что ток
опережает напряжение по фазе на 90.
Выражение (6.13) в комплексной форме записи
имеет вид
где
-
емкостное сопротивление, фиктивная
расчетная величина, имеющая размерность
сопротивления.Если комплексное
сопротивление индуктивности положительно
,
то комплексное сопротивление емкости
отрицательно
На рис. 6.7 изображена векторная диаграмма цепи с емкостью. Вектор тока опережает вектор напряжения на 90o.
8) Резонанс токов
Резонанс токов. Резонанс токов может возникнуть при параллельном соединении индуктивности и емкости (рис. 198, а). В идеальном случае, когда в параллельных ветвях отсутствует активное сопротивление (R1=R2 = 0), условием резонанса токов является равенство реактивных сопротивлений ветвей, содержащих индуктивность и емкость.. Так как в рассматриваемом случае активная проводимость = 0, ток в неразветвленной части цепи при резонансе I= 0. Значения токов в ветвях I1 и I2 будут равны (рис. 198,б), но токи будут сдвинуты по фазе на 180° (ток IL в индуктивности отстает по фазе от напряжения U на 90°, а ток в емкости I с опережает напряжение U на 90°). Следовательно, такой резонансный контур представляет собой для тока I бесконечно большое сопротивление и электрическая энергия в контур от источника не поступает. В то же время внутри контура протекают токи IL и Iс, т. е. имеет место процесс непрерывного обмена энергией внутри контура. Эта энергия переходит из индуктивности в емкость и обратно.
Изменяя значения емкости С или индуктивности L, можно изменять частоту колебаний электрической энергии и тока в контуре, т. е. осуществлять настройку контура на требуемую частоту. Если бы в ветвях, в которых включены индуктивность и емкость, не было активного сопротивления, этот процесс колебания энергии продолжался бы бесконечно долго, т. е. в контуре возникли бы незатухающие колебания энергии и токов IL и Iс. Однако реальные катушки индуктивности и конденсаторы всегда поглощают электрическую энергию (из-за наличия в катушках активного сопротивления проводов и возникновения
Рис. 197. Зависимость тока I и полного сопротивления Z от ? для последовательной (а) и параллельной (б) цепей переменного тока
Рис. 198. Электрическая схема (а) и векторные диаграммы (б и в) при резонансе токов
в конденсаторах токов смещения, нагревающих диэлектрик), поэтому в реальный контур при резонансе токов поступает от источника некоторая электрическая энергия и по неразветвленной части цепи протекает некоторый ток I.
Условием резонанса в реальном резонансном контуре, содержащем активные сопротивления R1 и R2, будет равенство реактивных проводимостей BL = BC ветвей, в которые включены индуктивность и емкость.
Из рис. 198, в следует, что ток I в неразветвленной части цепи совпадает по фазе с напряжением U, так как реактивные токи 1L и Iс равны, но противоположны по фазе, вследствие чего их векторная сумма равна нулю.
Если в рассматриваемой параллельной цепи изменять частоту ?о источника переменного тока, то полное сопротивление цепи начинает увеличиваться, достигает наибольшего значения при резонансе, а затем уменьшается (см. рис. 197,б). В соответствии с этим ток I начинает уменьшаться, достигает наименьшего значения Imin = Ia при резонансе, а затем увеличивается.
В реальных колебательных контурах, содержащих активное сопротивление, каждое колебание тока сопровождается потерями энергии. В результате сообщенная контуру энергия довольно быстро расходуется и колебания тока постепенно затухают. Для получения незатухающих колебаний необходимо все время пополнять потери энергии в активном сопротивлении, т. е. такой контур должен быть подключен к источнику переменного тока соответствующей частоты.
Явления резонанса напряжения и тока и колебательный контур получили весьма широкое применение в радиотехнике и высокочастотных установках. При помощи колебательных контуров мы получаем токи высокой частоты в различных радиоустройствах и высокочастотных генераторах. Колебательный контур — важнейший элемент любого радиоприемника. Он обеспечивает его избирательность, т. е. способность выделять из радиосигналов с различной длиной волны (т. е. с различной частотой), посланных различными радиостанциями, сигналы определенной радиостанции.
9 Устройство трехфазного генератора
Рассмотрим
устройство трехфазного генератора
переменного тока. В пазах статора
расположены три фазных обмотки (они
условно представлены единственными
витками). Начала и концы обмоток
трехфазного генератора принято обозначать
буквами
и
. Первыми
буквами латинского алфавита обозначают
начала обмоток, последними -
концы. Началом обмотки
называют зажим, через который
ток поступает во внешнюю цепь при
положительных его значениях.
Ротор генератора выполняется в виде вращающегося постоянного магнита или электромагнита, питаемого через скользящие контакты постоянным током.
При вращении ротора с помощью двигателя в обмотках статора возникают периодически изменяющиеся ЭДС, частота которых одинакова, но фазы в любой момент времени различны, так как различны положения обмоток в магнитном поле. ЭДС в неподвижных витках обмоток статора индуктируются в результате пересечения этих витков магнитным полем вращающегося ротора. Обмотки фаз генератора совершенно одинаковы и расположены симметрично по поверхности статора, поэтому ЭДС имеют одинаковые амплитудные значения, но сдвинутые друг относительно друга по фазе на угол 120 . Такую систему ЭДС называют системой прямой последовательности. Если изменить направление вращения ротора генератора на противоположное, то последовательность чередования фаз будет обратной. У генераторов роторы всегда вращаются в одном направлении, вследствие чего последовательность чередования фаз никогда не изменяется. От последовательности чередования фаз зависит направление вращения трехфазных синхронных и асинхронных двигателей. Достаточно поменять местами две любые фазы двигателя, как возникает обратная последовательность чередования фаз и, следовательно, противоположное направление вращения двигателя.
10) Измерение мощностей
Измерение активной мощности в трехфазных цепях производят с помощью трех, двух или одного ваттметров, используя различные схемы их включения. Схема включения ваттметров для измерения активной мощности определяется схемой сети (трех- или четырехпроводная), схемой соединения фаз приемника (звезда или треугольник), характером нагрузки (симметричная или несимметричная), доступностью нейтральной точки.
При несимметричной нагрузке в четырехпроводной цепи активную мощность измеряют тремя ваттметрами (рис. 3.18), каждый из которых измеряет мощность одной фазы – фазную мощность.
Рис. 3.18
Активная мощность приемника определяют по сумме показаний трех ваттметров
P = P1 + P2 + P3,
где P1 = UA IA cosφA; P2 = UB IB cosφB; P3 = UC IC cosφC.
Измерение мощности тремя ваттметрами возможно при любых условиях.
Измерение активной мощности двумя ваттметрами
В трехпроводных трехфазных цепях при симметричной и несимметричной нагрузках и любом способе соединения приемников широко распространена схема измерения активной мощности приемника двумя ваттметрами (рис. 3.21). Показания двух ваттметров при определенной схеме их включения позволяют определить активную мощность трехфазного приемника, включенного в цепь с симметричным напряжением источника питания.
На рис. 3.21 показана одна из возможных схем включения ваттметров: здесь токовые катушки включены в линейные провода с токами IA и IB, а катушки напряжения – соответственно на линейные напряжения UAC и UBC.
Рис. 3.21
При симметричной нагрузке
IA = IB = IЛ, UAC = UBC = UЛ.
11) Анализ соединения потребителей в звезду.
При соединение фаз обмотки генератора (или трансформатора) звездой их концы X, Y и Z соединяют в одну общую точку N, называемую нейтральной точкой (или нейтралью) (рис. 3.6). Концы фаз приемников (Za, Zb, Zc) также соединяют в одну точку n. Такое соединение называется соединение звезда.
Рис. 3.6
Провода A−a, B−b и C−c, соединяющие начала фаз генератора и приемника, называются линейными, провод N−n, соединяющий точкуN генератора с точкой n приемника, – нейтральным.
Трехфазная цепь с нейтральным проводом будет четырехпроводной, без нейтрального провода – трехпроводной.
В трехфазных цепях различают фазные и линейные напряжения. Фазное напряжение UФ – напряжение между началом и концом фазы или между линейным проводом и нейтралью (UA, UB, UC у источника; Ua, Ub, Uc у приемника). Если сопротивлением проводов можно пренебречь, то фазное напряжение в приемнике считают таким же, как и в источнике. (UA=Ua, UB=Ub, UC=Uc). За условно положительные направления фазных напряжений принимают направления от начала к концу фаз.
Линейное напряжение (UЛ) – напряжение между линейными проводами или между одноименными выводами разных фаз (UAB, UBC, UCA). Условно положительные направления линейных напряжений приняты от точек, соответствующих первому индексу, к точкам соответствующим второму индексу (рис. 3.6).
По аналогии с фазными и линейными напряжениями различают также фазные и линейные токи:
Фазные (IФ) – это токи в фазах генератора и приемников.
Линейные (IЛ) – токи в линейных проводах.
При соединении в звезду фазные и линейные токи равныIФ=IЛ.
Ток, протекающий в нейтральном проводе, обозначают IN.
12) Соединение потребителей в треугольник.
При соединении источника питания треугольником (рис. 3.12) конец X одной фазы соединяется с началом В второй фазы, конец Y второй фазы – с началом С третьей фазы, конец третьей фазы Z – c началом первой фазы А. Начала А, В и С фаз подключаются с помощью трех проводов к приемникам.
Рис. 3.12
Соединение фаз источника в замкнутый треугольник возможно при симметричной системе ЭДС, так какĖA + ĖB + ĖC = 0.
Если соединение обмоток треугольником выполнено неправильно, т.е. в одну точку соединены концы или начала двух фаз, то суммарная ЭДС в контуре треугольника отличается от нуля и по обмоткам протекает большой ток. Это аварийный режим для источников питания, и поэтому недопустим.
Напряжение между концом и началом фазы при соединении треугольником – это напряжение между линейными проводами. Поэтому при соединении треугольником линейное напряжение равно фазному напряжению.UЛ = UФ.
Пренебрегая сопротивлением линейных проводов, линейные напряжения потребителя можно приравнять линейным напряжениям источника питания: Uab = UAB, Ubc = UBC, Uca = UCA. По фазам Zab, Zbc, Zca приемника протекают фазные токи İab, İbc и İca. Условное положительное направление фазных напряжений Úab, Úbc и Úca совпадает с положительным направлением фазных токов. Условное положительное направление линейных токов İA, İB и İC принято от источников питания к приемнику.
В отличие от соединения звездой при соединении треугольником фазные токи не равны линейным. Токи в фазах приемника определяются по формулам
İab = Úab / Zab; İbc = Úbc / Zbc; İca = Úca / Zca.
Линейные токи можно определить по фазным, составив уравнения по первому закону Кирхгофа для узлов a, b и c
İA = İab - İca; İB = İbc - İab; İC = İca - İbc.
Сложив левые и правые части системы уравнений, получимİA + İB + İC = 0,
т.е. сумма комплексов линейных токов равна нулю как при симметричной, так и при несимметричной нагрузке.
13) Назначение и принцип действия трансформатора
Назначение трансформатора. Трансформатором называется статический электромагнитный аппарат, преобразующий переменный ток одного напряжения в переменный ток другого напряжения той же частоты.
Трансформаторы позволяют значительно повысить напряжение, вырабатываемое источниками переменного тока, установленными на электрических станциях, и осуществить передачу электроэнергии на дальние расстояния при высоких напряжениях (110, 220, 500, 750 и 1150 кВ). Благодаря этому сильно уменьшаются потери энергии в проводах и обеспечивается возможность значительного уменьшения площади сечения проводов линий электропередачи.
Принцип действия трансформатора. Действие трансформатора основано на явлении электромагнитной индукции. Простейший трансформатор состоит из стального магнитопровода и двух расположенных на нем обмоток. Обмотки выполнены из изолированного провода и электрически не связаны. К одной из обмоток подается электрическая энергия от источника переменного тока. Эту обмотку называют первичной. К другой обмотке, называемойвторичной, подключают потребители (непосредственно или через выпрямитель).
При подключении трансформатора к источнику переменного тока (электрической сети) в витках его первичной обмотки протекает переменный ток i1, образуя переменный магнитный поток Ф. Этот поток проходит по магнитопроводу трансформатора и, пронизывая витки первичной и вторичной обмоток, индуцирует в них переменные э. д. с. е1 и е2. Если к вторичной обмотке присоединен какой-либо приемник, то под действием э. д. с. е2 по ее цепи проходит ток i2.
Схема замещения для приведенного трансформатора. Приведенный трансформатор математически описывается уравнениями электрического состояния (2.8), (2.10) и уравнением токов (2.6б). В соответствии с этими уравнениями построена схема замещения трансформатора (рис. 2.9).
Н
а
схеме
и
соответственно
— активное сопротивление и сопротивление
рассеяния первичной обмотки;
и
—
приведенные активное сопротивление и
сопротивление рассеяния вторичной
обмотки;
и
— активное
и реактивное сопротивление ветви
холостого хода. Мощность потерь в
сопротивлении
при
токе
эквивалентна
потерям в магнитопроводе, т.е.
–
эквивалентное реактивное сопротивление.
Падение напряжения на ветви холостого
хода с комплексным сопротивлением
при
токе
равно
ЭДС
и
трансформатора.
Упрощенная схема замещения.
Параметры
схемы замещения трансформатора
экспериментально найти трудно. Если
пренебречь током холостого хода из-за
его малости, то получим так называемую
упрощенную схему замещения (рис. 2.10),
где
и
называются
сопротивлениями короткого замыкания
и
14) Устройство и принцип действия МПТ
Электрическая машина постоянного тока состоит из двух основных частей: неподвижной части ( индуктора) и вращающейся части ( якоря с барабанной обмоткой). На рис. 11.1 изображена конструктивная схема машины постоянного тока
Индуктор
состоит из станины 1 цилиндрической
формы, изготовленной из ферромагнитного
материала, и полюсов с обмоткой возбуждения
2, закрепленных на станине. Обмотка
возбуждения создает основной магнитный
поток.
Магнитный поток
может создаваться постоянными магнитами,
укрепленными на станине.
Якорь состоит из следующих элементов:
сердечника 3, обмотки 4, уложенной в пазы
сердечника, коллектора 5.
Рис. 11.1
Сердечник якоря
для уменьшения потерь на вихревые точки
набирается из изолированных друг от
друга листов электротехнической стали.
Генератор постоянного тока преобразует механическую энергию в электрическую. В зависимости от способов соединения обмоток возбуждения с якорем генераторы подразделяются на:
генераторы независимого возбуждения;
генераторы с самовозбуждением;
генераторы параллельного возбуждения;
генераторы последовательного возбуждения;
генераторы смешанного возбуждения;
В зависимости от характера изменения нагрузки электрические машины могут работать в различных номинальных режимах: продолжительном (длительном), кратковременном, повторно-кратковременном.
Продолжительный режим. Продолжительный режим работы электрической машины - такой режим, при котором машина работает с неизменной нагрузкой и время работы настолько велико, что превышение температуры над температурой окружающей среды достигает установившегося значения.
Кратковременный режим. Под кратковременным режимом понимают такой режим, в течение которого превышение температуры электрической машины не достигает установившегося значения. В этом режиме машина работает в. течение сравнительно небольшого периода времени, перерыв же в работе достаточно велик, чтобы она успела охладиться до температуры окружающей среды
Повторно-кратковременный режим. Электрические машины часто работают в повторно-кратковременном режиме, когда периоды работы машины под нагрузкой периодически чередуются с периодами отключения машины.