
- •4.1Свет,его физическая природа. Взаимодействия света с веществом
- •4.2 Явление отражения и приломления света(законы). Применение оптических приборов в медицинской практике.
- •4.3 Явление полного внутреннего отражения. Применение явления в медецинских методах иследования человечиского организма.
- •4.4 Ход лучей в оптической системе глаза. Приведенный глаз человека
- •4.6 Разрешающая способность глаза человека. Микроскопия.
- •4.7 Явление рассеивания света. Закон Релея.Нефелометрия.
- •Суть метода
- •Реализация процесса
- •4.8Поглащение света. Закон Бугера-Ламберта-Бера. Концетрационная колориметрия.
- •Поглинання світла розчинами
- •4.9 Поляризация света. Закон Малюса
- •4.10 Оптическая активность. Поляриметрія
- •4.11Теплое излучение тел.. Закон Киргофа. Абсолютно черное тело, серое тело.
- •1. Основні властивості теплового випромінювання
- •Абсолютно чорне тіло
- •4.12Измерение теплофизических характеристик тела человека(термометрия)
- •4.13 Терапевтическое влияние теплового излучения (ик) на организм человека
- •4.14 Законы теплового излучения: закон Стефана-Больцмана, формула Вина. Термография.
- •Первый закон излучения Вина
- •Второй закон излучения Вина
- •4.15 Излучение Солнца. Спектр солнечного излучения. Гелиотерапия.
- •5.1 Рентгеновское излучение: тормозно и характеристическое.
- •Тормозное рентгеновское излучение
- •Характеристическое рентгеновское излучение
- •5.2 Блок-схема рентгеновских аппаратов. Ренгеновская трубка.
- •5.3Взаимодействие рентгеновского излучения с веществом. Закон поглощения рентгеновкого излучения. Рентгенодиагностика.
- •Рентгенодиагностика
- •5.4 Взаимодействие рентгеновского излучения с биологическими тканями.Рентгетерапия
- •5.5 Радиактивность. Основной закон радиактивного распада. Период полураспада. Изотопы, их применение в медецине.
- •5.6 Активность радиоактивного вещества. Единицы измерения.
- •5.7 Природа альфа-излучения. Действие альфа-частиц на живые организмы. Защита от альфа-излучения.
- •5.8 Природа бета-излучения. Дествие бета-частиц на живые организмы
- •5.9(1)Природа гамма-излучения. Действие гамма- излучения на живые организмы. Защита от гамма-лучей.
- •5.9 (2) Природа гамма-излучения. Действие гамма- излучения на живые организмы. Защита от гамма-лучей.
- •5.10(1) Особенности действия ионизирующих излучений на организм человека.
- •5.11 (1)Физические принципы работы газоразрядного счетчика радиоктивного излучения. Радиометрия.
- •5.11(2) Физические принципы работы газоразрядного счетчика радиоктивного излучения. Радиометрия.
- •5.12(1)Поглощенная доза. Единица измерения.
- •5.13 (1)Экспозицио́нная до́за. Единица измерения.
- •5.13 (2)Экспозицио́нная до́за. Единица измерения.
- •5.14 (1)Биологическая эквивалентная доза .Единица измерения.
- •5.14(2) Биологическая эквивалентная доза .Единица измерения.
- •6.1 Современные представления о строении и функции биологических мембран. Функции биологических мембран
- •6.2 Липидный матрикс биологических мембран. Биофизические характеристики липидного слоя.
- •6.3 (1) Белки в биологических мембранах,их роль. Биофизические характеристики биомембран при наличии белков.
- •6.3 (2) Белки в биологических мембранах,их роль. Биофизические характеристики биомембран при наличии белков.
- •6.4 Поток вещества . Условия. Закон Фика.
- •6.5 Поток вещества, растворяемогов биомимбране. Уравнение Фика, проницаемость
- •6.6 Диффузия электрическизаряженных частиц через мембрану. Электрохимический градиент.
- •Электрохимический градиент
- •6.7. (1)Поток вещества через мембрану при наличии осмотического и электрического градиентов. Уравнение Нернста – Планка.
- •6.7 (2)Поток вещества через мембрану при наличии осматического и электрического градиентов. Уравнение Нериста-Планка
- •6.9 Транспорт вещества через многомембранные системы.
- •6.10(1)Активный транспорт вещества через биомембраны. Ионные насосы.
- •6.10(2)Активный транспорт вещества через биомембраны. Ионные насосы.
- •6.12 Биофизический механизм электрического потенциала покоя живой клетки.
- •6.13 Потенциал действия . Условия возникновения потенциала действия.Понятие об ионных каналах.
- •6.14Особенности прохождения электрических сигнало(возбуждения)в нервном волокне.
6.9 Транспорт вещества через многомембранные системы.
Мембранный транспорт — транспорт веществ сквозь клеточную мембрану в клетку или из клетки, осуществляемый с помощью различных механизмов — простой диффузии, облегченной диффузии и активного транспорта. Важнейшее свойство биологической мембраны состоит в ее способности пропускать в клетку и из нее различные вещества. Это имеет большое значение для саморегуляции и поддержания постоянного состава клетки. Такая функция клеточной мембраны выполняется благодаря избирательной проницаемости, то есть способностью пропускать одни вещества и не пропускать другие.
6.10(1)Активный транспорт вещества через биомембраны. Ионные насосы.
Активный транспорт — перенос вещества через клеточную или внутриклеточную мембрану (трансмембранный А.т.) или через слой клеток (трансцеллюлярный А.т.), протекающий поградиенту концентрации из области низкой концентрации в область высокой, т. е. с затратой свободной энергии организма. В большинстве случаев, но не всегда, источником энергии служит энергия макроэргических связей АТФ.
Различные транспортные АТФазы, локализованные в клеточных мембранах и участвующие в механизмах переноса веществ, являются основным элементом молекулярных устройств — насосов, обеспечивающих избирательное поглощение и откачивание определенных веществ (например, электролитов) клеткой. Активный специфический транспорт неэлектролитов (молекулярный транспорт) реализуется с помощью нескольких типов молекулярных машин — насосов и переносчиков. Транспорт неэлектролитов (моносахаридов, аминокислот и других мономеров) может сопрягаться с симпортом — транспортом другого вещества, движение которого по градиенту концентрации является источником энергии для первого процесса. Симпорт может обеспечиваться ионными градиентами (например, натрия) без непосредственного участия АТФ.
6.10(2)Активный транспорт вещества через биомембраны. Ионные насосы.
Активный транспорт — перенос вещества через клеточную или внутриклеточную мембрану (трансмембранный А.т.) или через слой клеток (трансцеллюлярный А.т.), протекающий поградиенту концентрации из области низкой концентрации в область высокой, т. е. с затратой свободной энергии организма. В большинстве случаев, но не всегда, источником энергии служит энергия макроэргических связей АТФ.
Различные транспортные АТФазы, локализованные в клеточных мембранах и участвующие в механизмах переноса веществ, являются основным элементом молекулярных устройств — насосов, обеспечивающих избирательное поглощение и откачивание определенных веществ (например, электролитов) клеткой. Активный специфический транспорт неэлектролитов (молекулярный транспорт) реализуется с помощью нескольких типов молекулярных машин — насосов и переносчиков. Транспорт неэлектролитов (моносахаридов, аминокислот и других мономеров) может сопрягаться с симпортом — транспортом другого вещества, движение которого по градиенту концентрации является источником энергии для первого процесса. Симпорт может обеспечиваться ионными градиентами (например, натрия) без непосредственного участия АТФ.
6.11 Равновесный потенциал Нериста. ТеорияБернштейна о мембранном потенциале. Важным элементом функционирования мембран явл.их способность пропускать или не пропускать молекулы и ионы.Вероятность такого проникновения частиц зависит как от направления их перемещения, так и от разновидности молекул и атомов.
На мембране существует разность потенциалов, слеловательно, в мембране имеется электр.поле.Оно оказывает влияние на диффузию заряженных частиц. Между напряженностью поля и градиентом потенциала сущ. известное соотношение Е=- dy:dx
Используем уравнение Нерста -Планка для установления зависимости плотности диффузионного потока от концентрации ионов и от напряжения электр.поля.
J=-Ddc:dx-D:RT. ZFcdy:dx=-D[dc;dx+ZFc:RT.dy:dx] (1)
Заряд иона равен Ze. На один ион действует сила f=-Ze dy:dx. сила действующая на 1 моль ионов равна
fNa= -ZeNady:dx=-ZFdy: dx где F-постоянная Фарадея F=tNa
Перенос ионов определяется двумя факторами неравномерностью их распределения, т.е. градиентом концентрации и воздействием электр. поля
J=-Ddc:dx-umZFcdy:dx
Уравнение Нерста-Планка (1) устанавливает связь плотности стационарного потока ионов с тремя величинами
1.проницаемость мемран для данного иона, которая характеризунт взаимодействие мемранных структур с ионом,
2. электр.полем,
3.концентрацией ионов в водном растворе, окружающем мембрану.