Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
MODUL_3_BF.docx
Скачиваний:
0
Добавлен:
01.05.2025
Размер:
433.73 Кб
Скачать

6.4 Поток вещества . Условия. Закон Фика.

Диффу́зия (лат. diffusio — распространение, растекание, рассеивание, взаимодействие) — процесс взаимного проникновения молекул одного вещества между молекулами другого, приводящий к самопроизвольному выравниванию их концентраций по всему занимаемому объёму[1]. В некоторых ситуациях одно из веществ уже имеет выравненную концентрацию и говорят о диффузии одного вещества в другом. При этом перенос вещества происходит из области с высокой концентрацией в область с низкой концентрацией (по градиенту концентрации)

Все виды диффузии подчиняются одинаковым законам. Скорость диффузии пропорциональна площади поперечного сечения образца, а также разности концентраций, температур или зарядов (в случае относительно небольших величин этих параметров).

Закон фика

dn/dt = DSdc/dx,  где dc/dx -градиент концентрации, S -величина поверхности раздела, D - коэффициент диффузии, n - кол-во молекул на единицу объема, t - время. 

Закон Фика первый:  плотность диффузионного потока вещества пропорционален градиенту изменения концентрации с коэффициентом пропорциональности D - кэфф. диффузии и направлен в другую от него сторону.  Закон Фика второй:  скорость изменения плотности диффузионного потока пропорциональна скорости изменения градиента концентрации с тем же коэффициентом D и так же напрвлена в другую сторону.

6.5 Поток вещества, растворяемогов биомимбране. Уравнение Фика, проницаемость

Проницаемость биологических мембран имеет большое значение для осморегуляции и поддержания постоянства состава клетки, её физико-химический гомеостаз; играет важную роль в генерации и проведении нервного импульса, в энергообеспечении клетки, сенсорных механизмах и др. процессах жизнедеятельности. Проницаемость биологических мембран обусловлена особенностями строения БМ, являющихся осмотическим барьером между клеткой и средой, и служит характерным примером единства и взаимосвязи между структурой и функцией на молекулярном уровне.

Уравнения Фика 

С точки зрения термодинамики движущим потенциалом любого выравнивающего процесса является рост энтропии. При постоянных давлении и температуре в роли такого потенциала выступает химический потенциал µ, обусловливающий поддержание потоков вещества. Поток частиц вещества пропорционален при этом градиенту потенциала

 ~ 

В большинстве практических случаев вместо химического потенциала применяется концентрация C. Прямая замена µ на C становится некорректной в случае больших концентраций, так как химический потенциал перестаёт быть связан с концентрацией по логарифмическому закону. Если не рассматривать такие случаи, то вышеприведённую формулу можно заменить на следующую:

которая показывает, что плотность потока вещества J [ ] пропорциональна коэффициенту диффузии D [( )] и градиенту концентрации. Это уравнение выражает первый закон Фика. Второй закон Фика связывает пространственное и временное изменения концентрации (уравнение диффузии):

Коэффициент диффузии D зависит от температуры. В ряде случаев в широком интервале температур эта зависимость представляет собой уравнение Аррениуса.

Дополнительное поле, наложенное параллельно градиенту химического потенциала, нарушает стационарное состояние. В этом случае диффузионные процессы описываются нелинейным уравнением Фоккера—Планка. Процессы диффузии имеют большое значение в природе:

  • Питание, дыхание животных и растений;

  • Проникновение кислорода из крови в ткани человека.

6.5 6.6  7.9 6.10

17:10:52

6.1 6.2

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]