
- •1.Классификация органических соединений
- •2.Кислотность и основность органических соединений. Теория Бренстеда-Лоури
- •3. Виды изомерии органических соединений
- •1. Изомерия углеводородной цепи (углеродного скелета).
- •2. Изомерия функциональной группы.
- •Изомерия положения:
- •4. Номенклатура органических соединений
- •5. Спирты. Характерные реакции.
- •6. Амины. Характерные реации.
- •7. Альдегиды и кетоны. Характерные реакции.
- •4. Восстановление и окисление оксосоединений.
- •8. Карбоновые кислоты. Характерные реакции.
- •9. Важнейшие гетерофункциональные соединения. Гидрокси и оксокислоты.
- •10. Гетерофункциональные производные бензола как лекарственные препараты.
- •11. Аминокислоты. Классификация.
- •12. Аминокислоты. Декарбоксилирование, дезаминирование.
- •13. Пептиды, белки. Структура белков.
- •14. Классификация углеводов.
- •15. Химические свойства моносахаридов.
- •16. Дисахариды. Структура.
- •17. Важнейшие представители гомополисахаридов. Структура.
- •18. Важнейшие представители гетерополисахаридов. Структура.
- •19. Строение нуклеозидов и нуклеотидов.
- •20. Строение нуклеиновых кислот.
1. Изомерия углеводородной цепи (углеродного скелета).
Изомерия углеродного скелета, обусловленная различным порядком связи атомов углерода. Простейший пример — бутан СН3-СН2-СН2-СН3 и 2-метилпропан (изобутан) (СН3)2СН-СН3.
2. Изомерия функциональной группы.
Различается характером функциональной группы; например, этанол (CH3-CH2-OH) и диметиловый эфир (CH3-O-CH3).
Изомерия положения:
а) кратных связей. Тип структурной изомерии, характеризующийся различием положения двойных и тройных связей при одинаковом углеродном скелете. Например, бутен-1 и бутен-2.
б) функциональных групп. Тип структурной изомерии, характеризующийся различием положения одинаковых функциональных групп.
Стереоизомерами называются изомеры, различающиеся только расположением атомов и групп атомов в пространстве. Имеются органические молекулы, не обладающие плоскостью симметрии, и такие молекулы оказывается совместимыми со своим зеркальным изображением. Это свойство называется хиральностью, а сами молекулы хиральными («хирос» - рука). Среди органических соединений наибольшее значение имеют соединения с хиральным атомом углерода. В связи с тем, что у такого атома отсутствуют симметрии, его также называют асимметрический. Стереоизомеры делятся на два вида: 1) энантиомеры; 2) диастереомеры. Энантиомеры – это стереоизомеры, обладающие одинаковыми физическими (кроме знака вращения) и химическими свойствами и относящиеся друг к другу как предмет к своему зеркальному отражению. Диастереомеры – это стереоизомеры, не являющиеся зеркальным отражением один другого и имеющие различные физические и химические свойства. Энантиомеры способны вращать плоскость поляризации света, т.е. обладают оптической активностью. Отсюда и название - оптическая изомерия. Величину и знак угла вращения нельзя предсказать; они определяются экспериментально с помощью прибора – поляриметра. Примером природной пары энантиомеров с одним центром хиральности служит глицериновый альдегид, который является конфигурационным стандартом.В молекуле этого соединения содержится один ассиметрический атом углевода. Когда хотят обозначить не только конфигурацию, но и вращение, при наименовании веществ ставят не только букву D- или L-, но и знак (+) или (-), обозначающий, соответственно, правое и левое вращение. Многие биологически важные вещества содержат в молекуле более одного центра хиральности. Представителем соединения с несколькими хиральными центрами являются глюкоза. Глюкоза содержит четыре асимметрических атомов углевода, следовательно, она может существовать в виде 16 изомеров (8 энантиомеров и 8 диастереомеров).
Диастереомерия делится на ω- диастереомерию и π-диастереомерию. ω-Диастереомеры имеет несколько хиральных центров. Соединения с несколькими асимметрическими атомами обладают важными особенностями, отличающими их от рассмотренных ранее более простых оптически активных веществ с одним центром хиральности. ω-Диастереомеры отличаются друг от друга не только оптическим вращением, но и всеми другими физическими константами: у них разные температуры плавления и кипения, разные растворимости и др. Различия в свойствах диастереомеров зачастую ничуть не меньше, чем различия в свойствах между структурными изомерами. Примером соединения рассматриваемого типа может случить хлоряблочная кислота, которая имеет два хиральных центра. Число пространственных изомеров определяется формулой N = 2n, где n - число асимметрических центров. Следовательно, хлоряблочная кислота имеет 4 стереоизомера.
Ее стереоизомерные формы имеют следующие проекционные формулы:
π-Диастереомеры – стереомеры, содержащие пи-связь. Этот вид диастереомерии, в частности, характерен для алкенов. Относительно плоскости пи-связи одинаковые заместители у двух атомов углерода могут располагаться по одну (цис-) или по разные (транс-) стороны. Это приводит к существованию стереоизомеров, известных также по названиям цис- и транс-изомеров. Основная причина существования цис- и транс-изомеров заключается в невозможности вращения вокруг пи-связи без ее нарушения.
Цис- и транс-изомеры имеют одинаковую последовательность связей атомов, но отличаются друг от друга пространственным расположением заместителей и поэтому являются стереоизомерами. Например: бутен-2 имеет два π-диастереомера – цис- и транс-изомер.
К биологически активным π-диастереомерам можно отнести фумаровую и малеиновую кислоты, которые являются цис- и транс-изомерами бутен-2-диовой кислоты, природные ненасыщенные жирные кислоты, имеющие цис- конфигурацию двойной связи. Они обладают большим запасом внутренней энергии, и, следовательно, по сравнению с транс- изомерами, биологически более активны.